Skip to main content

Rehabilitation After Hemorrhagic Stroke: From Acute to Chronic Stage

  • Chapter
  • First Online:
Stroke Revisited: Hemorrhagic Stroke

Part of the book series: Stroke Revisited ((STROREV))

Abstract

The ultimate goal of rehabilitation in hemorrhagic stroke does not differ from that in ischemic stroke: to reduce disability, regain independence, and improve quality of life. Due to the lack of studies in this specific population, the rehabilitation principles and practice guidelines for hemorrhagic stroke follow those for ischemic stroke. Stroke is a complex syndrome, and the rehabilitation process therefore requires an integrated program provided by a multidisciplinary team. Although controversy about very early rehabilitation in stroke patients has arisen recently, it is generally accepted that early rehabilitation prevents stroke complications and promotes functional recovery. As stroke has various symptoms, the rehabilitation process should include a comprehensive assessment of motor, cognitive, and communication functions, swallowing, and emotions. Medical complications during rehabilitation affect functional recovery and may even increase the risk of mortality in stroke patients. Thus, preventing stroke complications should be considered not only in the acute phase but also in the chronic phase of stroke. Most spontaneous recovery in stroke patients occurs within 6 months after onset, and a substantial number of patients are left with chronic disabilities. Novel therapies to reduce residual disabilities and improve functional outcomes have attracted much attention recently, with rehabilitation robots, virtual reality, and noninvasive brain stimulation being of particular interest in this field. Researchers and clinicians are attempting to combine these novel therapies with conventional stroke rehabilitation. The gathered evidence may impact future rehabilitative practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  2. Saulle MF, Schambra HM. Recovery and rehabilitation after intracerebral hemorrhage. Semin Neurol. 2016;36:306–12.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–702.

    Article  PubMed  Google Scholar 

  4. Zhang P, Xianglei J, Hongbo Y, et al. Neuroprotection of early locomotor exercise poststroke: evidence from animal studies. Can J Neurol Sci. 2015;42:213–20.

    Article  PubMed  Google Scholar 

  5. Coleman ER, Moudgal R, Lang K, et al. Early rehabilitation after stroke: a narrative review. Curr Atheroscler Rep. 2017;19:59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernhardt J, Langhorne P, Lindley RI, et al. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015;386:46–55.

    Article  Google Scholar 

  7. Liu N, Cadilhac DA, Andrew NE, et al. Randomized controlled trial of early rehabilitation after intracerebral hemorrhage stroke: difference in outcomes within 6 months of stroke. Stroke. 2014;45:3502–7.

    Article  PubMed  Google Scholar 

  8. Olkowski BF, Devine MA, Slotnick LE, et al. Safety and feasibility of an early mobilization program for patients with aneurysmal subarachnoid hemorrhage. Phys Ther. 2013;93:208–15.

    Article  PubMed  Google Scholar 

  9. Shimamura N, Matsuda N, Satou J, et al. Early ambulation produces favorable outcome and nondemential state in aneurysmal subarachnoid hemorrhage patients older than 70 years of age. World Neurosurg. 2014;81:330–4.

    Article  PubMed  Google Scholar 

  10. Ma Z, Wang Q, Liu M. Early versus delayed mobilisation for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2013;5:CD008346.

    Google Scholar 

  11. Meijer R, Ihnenfeldt DS, De Groot IJ, et al. Prognostic factors for ambulation and activities of daily living in the subacute phase after stroke. A systematic review of the literature. Clin Rehabil. 2003;17:119–29.

    Article  CAS  PubMed  Google Scholar 

  12. Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol. 2017;16:826–36.

    Article  PubMed  Google Scholar 

  13. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32:1279–84.

    Article  CAS  PubMed  Google Scholar 

  14. Yekutiel M, Guttman E. A controlled trial of the retraining of the sensory function of the hand in stroke patients. J Neurol Neurosurg Psychiatry. 1993;56:241–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Management of Stroke Rehabilitation Working G. VA/DOD clinical practice guideline for the management of stroke rehabilitation. J Rehabil Res Dev. 2010;47:1–43.

    Article  Google Scholar 

  16. Pulvermuller F, Neininger B, Elbert T, et al. Constraint-induced therapy of chronic aphasia after stroke. Stroke. 2001;32:1621–6.

    Article  CAS  PubMed  Google Scholar 

  17. Martino R, Foley N, Bhogal S, et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36:2756–63.

    Article  PubMed  Google Scholar 

  18. Horner J, Massey EW, Brazer SR. Aspiration in bilateral stroke patients. Neurology. 1990;40:1686–8.

    Article  CAS  PubMed  Google Scholar 

  19. Trapl M, Enderle P, Nowotny M, et al. Dysphagia bedside screening for acute-stroke patients: the Gugging swallowing screen. Stroke. 2007;38:2948–52.

    Article  PubMed  Google Scholar 

  20. Martino R, Silver F, Teasell R, et al. The Toronto bedside swallowing screening test (TOR-BSST): development and validation of a dysphagia screening tool for patients with stroke. Stroke. 2009;40:555–61.

    Article  PubMed  Google Scholar 

  21. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:e98–e169.

    Article  PubMed  Google Scholar 

  22. Shaker R, Easterling C, Kern M, et al. Rehabilitation of swallowing by exercise in tube-fed patients with pharyngeal dysphagia secondary to abnormal UES opening. Gastroenterology. 2002;122:1314–21.

    Article  PubMed  Google Scholar 

  23. Chang WH, Kim YH. Robot-assisted therapy in stroke rehabilitation. J Stroke. 2013;15:174–81.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morone G, Paolucci S, Cherubini A, et al. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017;13:1303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mehrholz J, Thomas S, Werner C, et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017;5:CD006185.

    PubMed  Google Scholar 

  26. Mehrholz J, Pohl M, Platz T, et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015;6:CD006876.

    Google Scholar 

  27. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5:708–12.

    Article  PubMed  Google Scholar 

  28. Chang WH, Kim YH, Bang OY, et al. Long-term effects of rTMS on motor recovery in patients after subacute stroke. J Rehabil Med. 2010;42:758–64.

    Article  PubMed  Google Scholar 

  29. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.

    Article  PubMed  Google Scholar 

  30. Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clin Neurophysiol. 2012;123:644–57.

    Article  CAS  PubMed  Google Scholar 

  31. Elsner B, Kugler J, Pohl M, et al. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645.

    PubMed  Google Scholar 

  32. Elsner B, Kugler J, Pohl M, et al. Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev. 2015;5:CD009760.

    Google Scholar 

  33. Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349.

    PubMed  Google Scholar 

  34. Ingeman A, Andersen G, Hundborg HH, et al. In-hospital medical complications, length of stay, and mortality among stroke unit patients. Stroke. 2011;42:3214–8.

    Article  PubMed  Google Scholar 

  35. Passero S, Rocchi R, Rossi S, et al. Seizures after spontaneous supratentorial intracerebral hemorrhage. Epilepsia. 2002;43:1175–80.

    Article  PubMed  Google Scholar 

  36. Lin YJ, Chang WN, Chang HW, et al. Risk factors and outcome of seizures after spontaneous aneurysmal subarachnoid hemorrhage. Eur J Neurol. 2008;15:451–7.

    Article  PubMed  Google Scholar 

  37. Xi G, Strahle J, Hua Y, et al. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol. 2014;115:45–63.

    Article  PubMed  Google Scholar 

  38. Chen Z, Song W, Du J, et al. Rehabilitation of patients with chronic normal-pressure hydrocephalus after aneurysmal subarachnoid hemorrhage benefits from ventriculoperitoneal shunt. Top Stroke Rehabil. 2009;16:330–8.

    Article  PubMed  Google Scholar 

  39. Kelly J, Rudd A, Lewis R, et al. Venous thromboembolism after acute stroke. Stroke. 2001;32:262–7.

    Article  CAS  PubMed  Google Scholar 

  40. Paciaroni M, Agnelli G, Venti M, et al. Efficacy and safety of anticoagulants in the prevention of venous thromboembolism in patients with acute cerebral hemorrhage: a meta-analysis of controlled studies. J Thromb Haemost. 2011;9:893–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lord AS, Langefeld CD, Sekar P, et al. Infection after intracerebral hemorrhage: risk factors and association with outcomes in the ethnic/racial variations of intracerebral hemorrhage study. Stroke. 2014;45:3535–42.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Westendorp WF, Vermeij JD, Zock E, et al. The preventive antibiotics in stroke study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet. 2015;385:1519–26.

    Article  CAS  PubMed  Google Scholar 

  43. Poisson SN, Johnston SC, Josephson SA. Urinary tract infections complicating stroke: mechanisms, consequences, and possible solutions. Stroke. 2010;41:e180–4.

    Article  PubMed  Google Scholar 

  44. Turner-Stokes L, Jackson D. Shoulder pain after stroke: a review of the evidence base to inform the development of an integrated care pathway. Clin Rehabil. 2002;16:276–98.

    Article  PubMed  Google Scholar 

  45. Lindgren I, Jonsson AC, Norrving B, et al. Shoulder pain after stroke: a prospective population-based study. Stroke. 2007;38:343–8.

    Article  PubMed  Google Scholar 

  46. Faghri PD, Rodgers MM, Glaser RM, et al. The effects of functional electrical stimulation on shoulder subluxation, arm function recovery, and shoulder pain in hemiplegic stroke patients. Arch Phys Med Rehabil. 1994;75:73–9.

    PubMed  CAS  Google Scholar 

  47. Morris PL, Robinson RG, Raphael B. Prevalence and course of depressive disorders in hospitalized stroke patients. Int J Psychiatry Med. 1990;20:349–64.

    Article  CAS  PubMed  Google Scholar 

  48. Gainotti G, Azzoni A, Marra C. Frequency, phenomenology and anatomical-clinical correlates of major post-stroke depression. Br J Psychiatry. 1999;175:163–7.

    Article  CAS  PubMed  Google Scholar 

  49. Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry. 2016;173:221–31.

    Article  PubMed  Google Scholar 

  50. Hackett ML, Kohler S, O’brien JT, et al. Neuropsychiatric outcomes of stroke. Lancet Neurol. 2014;13:525–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, YH. (2018). Rehabilitation After Hemorrhagic Stroke: From Acute to Chronic Stage. In: Lee, SH. (eds) Stroke Revisited: Hemorrhagic Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1427-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1427-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1426-0

  • Online ISBN: 978-981-10-1427-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics