Skip to main content

CD34+ Cell in Cord Blood and Neonates

  • Chapter
  • First Online:
  • 389 Accesses

Abstract

CD34 surface antigen has been extensively used as a marker for hematopoietic stem cells in adult bone marrow. Cord blood contains high number of hematopoietic and non-hematopoietic stem/progenitor cells. This chapter focuses on recent progresses in stem cell biology on cord blood cells. During embryonic development, expression of CD34 is tightly regulated in a spatial and temporal manner. Subpopulations of CD34+ cells in cord blood have been characterized by their functional potency. CD133 positivity and aldehyde dehydrogenase activity are well overlapped to show higher regenerative potentials in CD34+ cells. Proportion of CD34+ cells tends to be higher in cord blood from preterm baby. The higher number of circulating CD34+ cells in neonate has been found to be linked to the lower risk of prematurity-related complications. Further mechanistic studies will be required to reveal the role of circulating CD34+ cells in neonate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry. 1998;34:61–70.

    Article  CAS  PubMed  Google Scholar 

  2. Wagner JE, Barker JN, DeFor TE, Scott Baker K, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100:1611–8.

    CAS  PubMed  Google Scholar 

  3. Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lièvre F, Péault B. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood. 1996;87:67–72.

    CAS  PubMed  Google Scholar 

  4. Medvinsky A, Rybtsov S, Taoudi S. Embryonic origin of the adult hematopoietic system: advances and questions. Development. 2011;138:1017–31.

    Article  CAS  PubMed  Google Scholar 

  5. Tavian M, Hallais MF, Péault B. Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development. 1999;126:793–803.

    CAS  PubMed  Google Scholar 

  6. Slayton WB, Juul SE, Calhoun DA, Li Y, Braylan RC, Christensen RD. Hematopoiesis in the liver and marrow of human fetuses at 5 to 16 weeks postconception: quantitative assessment of macrophage and neutrophil populations. Pediatr Res. 1998;43:774–82.

    Article  CAS  PubMed  Google Scholar 

  7. Furness SG, McNagny K. Beyond mere markers: functions for CD34 family of sialomucins in hematopoiesis. Immunol Res. 2006;34:13–32.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood. 1996;87:479–90.

    CAS  PubMed  Google Scholar 

  9. Suzuki A, Andrew DP, Gonzalo JA, Fukumoto M, Spellberg J, Hashiyama M, et al. CD34-deficient mice have reduced eosinophil accumulation after allergen exposure and show a novel crossreactive 90-kD protein. Blood. 1996;87:3550–62.

    CAS  PubMed  Google Scholar 

  10. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, Fujioka T, Kohno H, et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia. 2013;28:1308–15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood. 2003;101:168–72.

    Article  CAS  PubMed  Google Scholar 

  14. Finney MR, Fanning LR, Joseph ME, Goldberg JL, Greco NJ, Bhakta S, et al. Umbilical cord blood-selected CD133(+) cells exhibit vasculogenic functionality in vitro and in vivo. Cytotherapy. 2010;12:67–78.

    Article  CAS  PubMed  Google Scholar 

  15. Balber AE. Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells. 2011;29:570–5.

    Article  CAS  PubMed  Google Scholar 

  16. Ma I, Allan AL. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev. 2011;7:292–306.

    Article  CAS  PubMed  Google Scholar 

  17. Christ O, Lucke K, Imren S, Leung K, Hamilton M, Eaves A, et al. Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica. 2007;92:1165–72.

    Article  CAS  PubMed  Google Scholar 

  18. Nakagawa R, Watanabe T, Kawano Y, Kanai S, Suzuya H, Kaneko M, et al. Analysis of maternal and neonatal factors that influence the nucleated and CD34+ cell yield for cord blood banking. Transfusion. 2004;44:262–7.

    Article  PubMed  Google Scholar 

  19. Pope B, Hokin B, Grant R. Effect of maternal iron status on the number of CD34+ stem cells harvested from umbilical cord blood. Transfusion. 2014;54:1876–80.

    Article  PubMed  Google Scholar 

  20. Omori A, Manabe M, Kudo K, Tanaka K, Takahashi K, Kashiwakura I. Influence of obstetric factors on the yield of mononuclear cells, CD34+ cell count and volume of placental/umbilical cord blood. J Obstet Gynaecol Res. 2010;36:52–7.

    Article  PubMed  Google Scholar 

  21. Page KM, Mendizabal A, Betz-Stablein B, Wease S, Shoulars K, Gentry T, et al. Optimizing donor selection for public cord blood banking: influence of maternal, infant, and collection characteristics on cord blood unit quality. Transfusion. 2014;54:340–52.

    Article  CAS  PubMed  Google Scholar 

  22. Wisgrill L, Schüller S, Bammer M, Berger A, Pollak A, Radke TF, et al. Hematopoietic stem cells in neonates: any differences between very preterm and term neonates? PLoS One. 2014;9:e106717.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Podestà M, Bruschettini M, Cossu C, Sabatini F, Dagnino M, Romantsik O, et al. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples. PLoS One. 2015;10:e0138680.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kotowski MJ, Safranow K, Kawa MPMP, Lewandowska J, Kłos P, Dziedziejko V, et al. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns. BMC Pediatr. 2012;12:148.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qi Y, Qian L, Sun B, Chen C, Cao Y. Circulating CD34(+) cells are elevated in neonates with respiratory distress syndrome. Inflamm Res. 2010;59:889–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Hamazaki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamazaki, T., Shintaku, H. (2018). CD34+ Cell in Cord Blood and Neonates. In: Shintaku, H., Oka, A., Nabetani, M. (eds) Cell Therapy for Perinatal Brain Injury. Springer, Singapore. https://doi.org/10.1007/978-981-10-1412-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1412-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1411-6

  • Online ISBN: 978-981-10-1412-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics