Skip to main content

New Strategy of Clinical Studies for Premature Babies with Ischemic Brain Damage

  • Chapter
  • First Online:
Cell Therapy for Perinatal Brain Injury

Abstract

In Japan, we started autologous cord blood therapy for newborns with HIE in 2014 (described in Chap. 1). Another research group started autologous cord blood therapy for patients with cerebral palsy in 2017. However, cerebral palsy is induced in nearly twice as many premature babies with IVH and PVL as that by term newborns with HIE (Touyama et al. Brain Dev 38:792–799, 2016; Koterazawa et al. No to Hattatsu 48:14–19, 2016; Glinianaia et al. Dev Med Child Neurol 59:864–870, 2017). Therefore, we are now promoting a new clinical study protocol of cell therapy for premature newborns with PVL or IVH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimmelman J, Hyun I, Benvenisty N, Caulfield T, Heslop HE, Murry CE, et al. Policy: global standards for stem cell research. Nature. 2016;533:311–3.

    Article  CAS  PubMed  Google Scholar 

  2. Caulfield T, Sipp D, Murry CE, Daley GQ, Kimmelman J. Confronting stem cell hype. Science. 2016;352:776–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bennet L, Tan S, Gunn AJ, Derrick M, Groenendaal F, van Bel F, et al. Cell therapy for neonatal hypoxia–ischemia and cerebral palsy. Ann Neurol. 2012;71:589–600.

    Article  PubMed  Google Scholar 

  4. Rizk M, Aziz J, Allan DS, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23:1607–13.

    Article  PubMed  Google Scholar 

  5. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun J, Allison J, McLaughlin C, Sledge L, Waters-Pick B, Wease S, et al. Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50:1980–7.

    Article  PubMed  Google Scholar 

  8. Michejda M. Which stem cells should be used for transplantation? Fetal Diagn Ther. 2004;19:2–8.

    Article  PubMed  Google Scholar 

  9. Auerbach AD, Liu Q, Ghosh R, Pollack MS, Douglas GW, Broxmeyer HE. Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion. 1990;30(8):682–7.

    Article  CAS  PubMed  Google Scholar 

  10. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Eurocord transplant group and the European blood and marrow transplantation group. Outcome of cord-blood transplantation from related and unrelated donors. N Engl J Med. 1997;337(6):373–81.

    Article  CAS  PubMed  Google Scholar 

  11. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 1996;335(3):157–66.

    Article  CAS  PubMed  Google Scholar 

  12. Herr AL, Kabbara N, Bonfim CM, Teira P, Locatelli F, Tiedemann K, et al. Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: an analysis on behalf of Eurocord-EBMT. Blood. 2010;116(11):1849–56.

    Article  CAS  PubMed  Google Scholar 

  13. Hassall OW, Thitiri J, Fegan G, Hamid F, Mwarumba S, Denje D, et al. Safety and efficacy of allogeneic umbilical cord red blood cell transfusion for children with severe anaemia in a Kenyan hospital: an open-label single-arm trial. Lancet Haematol. 2015;2(3):e101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hassall O, Bedu-Addo G, Adarkwa M, Danso K, Bates I. Umbilical-cord blood for transfusion in children with severe anaemia in under-resourced countries. Lancet. 2003;361:678–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature. 2006;441:1094–6.

    Article  CAS  PubMed  Google Scholar 

  16. Sato Y, Oohira A. Chondroitin sulfate, a major niche substance of neural stem cells, and cell transplantation therapy of neurodegeneration combined with niche modification. Curr Stem Cell Res Ther. 2009;4:200–9.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Yawno T, Sutherland A, Loose J, Nitsos I, Bischof R, et al. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells. Exp Neuro. 2016;283:179–87.

    Article  Google Scholar 

  18. Staba SL, Escolar ML, Poe M, Kim Y, Kurtzberg J, Martin PL, et al. Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med. 2004;350(19):1960–9.

    Article  CAS  PubMed  Google Scholar 

  19. Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352(20):2069–81.

    Article  CAS  PubMed  Google Scholar 

  20. Akihiko Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;414:330–8.

    Google Scholar 

  21. Taguchi A, Sakai C, Soma T, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase1/2A clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015;24(19):2207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meier C, Middelanis J, Neuhoff S, Roth-Haerer A, Gantert M. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59:244–9.

    Article  PubMed  Google Scholar 

  23. Cox CS Jr, Baumgartner JE, Gee A, Worth LL, Walker PA, Shah SK, et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery. 2011;68:588–600.

    Article  PubMed  Google Scholar 

  24. Wang X, Cheng H, Hua Y, Yang J, Dai G, Zhang Z, et al. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15:1549–62.

    Article  PubMed  Google Scholar 

  25. Sharma A, Sane H, Badhe P, Gokulchandran N, Kulkarni P, Gandhi S, et al. A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int. 2015;2015:905874.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Min K, Song J, Kim M, Ko J, Ryu JS, Kang MS. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–91.

    Article  CAS  PubMed  Google Scholar 

  27. Mehta T, Feroz A, Trivedi H, Vanikar A, Shah V, Trivedi H. Subarachnoid placement of stem cells in neurological disorders. Transplant Proc. 2008;40:1145–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mancías-Guerra C, Marroquín-Escamilla AR, Gómez-Almaguer D, Villarreal-Martínez L, Jaime-Pérez JC, García-Rodríguez F. Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy. 2014;16:810–20.

    Article  PubMed  Google Scholar 

  29. Rosenkranz K, Tenbusch M, May C, Marcus K, Meier C. Changes in Interleukin-1 alpha serum levels after transplantation of umbilical cord blood cells in a model of perinatal hypoxic– ischemic brain damage. Ann Anat. 2013;195:122–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wasielewski B, Jensen A, Roth-Härer A, Dermietzel R, Meier C. Neuroglial activation and Cx43 expression are reduced upon transplantation of human umbilical cord blood cells after perinatal hypoxic–ischemic injury. Brain Res. 2012;1487:39–53.

    Article  CAS  PubMed  Google Scholar 

  31. Paton MCB, McDonald CA, Allison BJ, Fahey MC, Jenkin G, Miller SL, et al. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: designing targeted stem cell therapies. Front Neurosci. 2017;11:200.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenkranz K, Kumbruch S, Marcus K, Marschner K, Dermietzel R. Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic–ischemic brain injury in rats. Cell Tissue Res. 2012;348:429–38.

    Article  CAS  PubMed  Google Scholar 

  33. Hattori T, Sato Y, Kondo T, Ichinohashi Y, Sugiyama Y, Yamamoto M, et al. Administration of umbilical cord blood cells transiently decreased hypoxic-ischemic brain injury in neonatal rats. Dev Neurosci. 2015;37:95–104.

    Article  CAS  PubMed  Google Scholar 

  34. Pimentel-Coelho PM, Magalhaes ES, Lopes LM, LC DA, Santiago MF, Mendez-Otero R. Human cord blood transplantation in a neonatal rat model of hypoxic–ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev. 2010;19:351–8.

    Article  PubMed  Google Scholar 

  35. Yoshihara T, Taguchi A, Matsuyama T, Shimizu Y, Kikuchi-Taura A, Soma T, Stern DM, et al. Increase in circulating CD34positive cells in patients with angiographic evidence of moyamoya-like vessels. J Cereb Blood Flow Metab. 2008;28:1086–9.

    Article  CAS  PubMed  Google Scholar 

  36. Rosenkranz K, Kumbruch S, Kumbruch S, Lebermann K, Marschner K, Jensen A, Dermietzel R, et al. The chemokine SDF-1/CXCL12 contributes to the ‘homing’ of umbilical cord blood cells to a hypoxic–ischemic lesion in the rat brain. J Neurosci Res. 2010;88:1223–33.

    CAS  PubMed  Google Scholar 

  37. Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med. 2010;14:914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34+cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001;97:3705–085.

    Article  Google Scholar 

  39. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K, et al. Circulating CD34-positive cells provide an index of cerebrovascular function. Circulation. 2004;109:2972–5.

    Article  PubMed  Google Scholar 

  40. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;414:330–8.

    Article  Google Scholar 

  41. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  42. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Cir Res. 1999;85:221–8.

    Article  CAS  Google Scholar 

  43. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA. 2002;99:11946–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progeny cells for myocardial ischemia. Circulation. 2001;103:634–7.

    Article  CAS  PubMed  Google Scholar 

  45. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neuronal progenitors. Cell. 2002;110:429–41.

    Article  CAS  PubMed  Google Scholar 

  46. Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF. Fibroblasts growth factor mediated proliferations of central nervous system precursors depends on endogenous production of insulin-like growth factor 1. Proc Natl Acad Sci U S A. 1991;88:2199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kasahara Y, Yamahara K, Yamahara K, Soma T, Stern DM, Nakagomi T, Matsuyama T, et al. Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res. 2016;176:69–80.

    Article  PubMed  Google Scholar 

  48. Felling RJ, Snyder MJ, Snyder MJ, Romanko MJ, Rothstein RP, Ziegler AN. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J Neurosci. 2006;26:4359–69.

    Article  CAS  PubMed  Google Scholar 

  49. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A. 1997;94:4080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mezey E, Key S, Vogelsang G, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A. 2003;100:1364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Y, Adomat H, Guns ET, Hojabrpour P, Duronio V, Curran TA, et al. Identification of a hematopoietic cell dedifferentiation-inducing factor. J Cell Physiol. 2016;231:1350–63.

    Article  CAS  PubMed  Google Scholar 

  52. Chen SH, Wang JJ, Chen CH, Chang HK, Lin MT, Chang FM, et al. Umbilical cord blood-derived CD34+ cells improve outcomes of traumatic brain injury in rats by stimulating angiogenesis and neurogenesis. Cell Transplant. 2014;23:959–79.

    Article  PubMed  Google Scholar 

  53. Davoust N, Vuaillat C, Cavillon G, Domenget C, Hatterer E, Bernard A, et al. Bone marrow CD34+/B220+ progenitors target the inflamed brain and display in vitro differentiation potential toward microglia. FASEB J. 2006;20:2081–92.

    Article  CAS  PubMed  Google Scholar 

  54. Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med. 2016;37:1170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Touyama M, Touyama J, Toyokawa S, Kobayashi Y. Trends in the prevalence of cerebral palsy in children born between 1988 and 2007 in Okinawa, Japan. Brain Dev. 2016;38:792–9.

    Article  PubMed  Google Scholar 

  56. Koterazawa K, Okada Y, Miyata H. Incidence of cerebral palsy in Himeji over a 25-year period. No Hattatsu. 2016;48:14–9. Japanese

    Google Scholar 

  57. Glinianaia SV, Best KE, Lingam R, Rankin J. Predicting the prevalence of cerebral palsy by severity level in children aged 3 to 15 years across England and Wales by 2020. Dev Med Child Neurol. 2017;59(8):864–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nabetani M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nabetani, M., Shintaku, H. (2018). New Strategy of Clinical Studies for Premature Babies with Ischemic Brain Damage. In: Shintaku, H., Oka, A., Nabetani, M. (eds) Cell Therapy for Perinatal Brain Injury. Springer, Singapore. https://doi.org/10.1007/978-981-10-1412-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1412-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1411-6

  • Online ISBN: 978-981-10-1412-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics