Skip to main content

A New Prospective Cell Therapy for Neonatal Brain Injury

  • Chapter
  • First Online:
Cell Therapy for Perinatal Brain Injury

Abstract

Cerebral palsy is a lifelong neurological disorder, mainly caused by hypoxic-ischemic encephalopathy, hemorrhage, and periventricular leukomalacia occurring at delivery or perinatally. To prevent or reduce the neurogenic disabilities in cerebral palsy, therapies using hypothermia, autologous cord blood infusion, and recently, mesenchymal stromal cells (MSCs) have been applied. MSCs can be obtained from fetal appendages such as cord blood, umbilical cord, amnion, and placenta. In this chapter, the expected feasibility of such cell therapies for cerebral palsy is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsuji M, Taguchi A, Ohshima M, Kasahara Y, Sato Y, Tsuda H, et al. Effects of intravenous administration of umbilical cord blood CD34(+) cells in a mouse model of neonatal stroke. Neuroscience. 2014;263:148–58. Epub 2014/01/22.

    Article  CAS  PubMed  Google Scholar 

  2. Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, et al. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res. 2004;75(4):573–84. Epub 2004/01/27.

    Article  CAS  PubMed  Google Scholar 

  3. Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol. 2008;43(11):1009–17. Epub 2008/07/08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagamura-Inoue T, Mori Y, Yizhou Z, Watanabe N, Takahashi TA. Differential expansion of umbilical cord blood mononuclear cell-derived natural killer cells dependent on the dose of interleukin-15 with Flt3L. Exp Hematol. 2004;32(2):202–9. Epub 2004/04/23.

    Article  CAS  PubMed  Google Scholar 

  5. Hikaru Okada, Tokiko Nagamura-Inoue, Yuka Mori, Tsuneo A. Takahashi, Expansion of Vα 24+Vβ 11 NKT cells from cord blood mononuclear cells using IL-15, IL-7 and Flt3-L depends on monocytes. European Journal of Immunology. 2006;36(1):236–44.

    Google Scholar 

  6. Cany J, Dolstra H, Shah N. Umbilical cord blood-derived cellular products for cancer immunotherapy. Cytotherapy. 2015;17(6):739–48. Epub 2015/03/22.

    Article  PubMed  Google Scholar 

  7. Gnecchi M, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol. 2009;482:281–94. Epub 2008/12/18.

    Article  CAS  PubMed  Google Scholar 

  8. Bieback K, Kluter H. Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther. 2007;2(4):310–23.

    Article  CAS  PubMed  Google Scholar 

  9. Gruber HE, Deepe R, Hoelscher GL, Ingram JA, Norton HJ, Scannell B, et al. Human adipose-derived mesenchymal stem cells: direction to a phenotype sharing similarities with the disc, gene expression profiling, and coculture with human annulus cells. Tissue Eng A. 2010;16(9):2843–60. Epub 2010/04/23.

    Article  CAS  Google Scholar 

  10. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.

    Article  Google Scholar 

  11. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105–10.

    Article  PubMed  Google Scholar 

  12. Ukai R, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma. 2007;24(3):508–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells. 2008;26(11):2865–74. Epub 2008/08/16.

    Article  CAS  PubMed  Google Scholar 

  14. Takeo Mukai, Tokiko Nagamura-Inoue, Takahisa Shimazu, Yuka Mori, Atsuko Takahashi, Hajime Tsunoda, Satoru Yamaguchi, Arinobu Tojo, Neurosphere formation enhances the neurogenic differentiation potential and migratory ability of umbilical cord-mesenchymal stromal cells. Cytotherapy. 2016;18(2):229–41.

    Google Scholar 

  15. Mukai T, Mori Y, Shimazu T, Takahashi A, Tsunoda H, Yamaguchi S, et al. Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience. 2017;355:175–87. Epub 2017/05/16.

    Google Scholar 

  16. Nagamura-Inoue T, Mukai T. Umbilical Cord is a Rich Source of Mesenchymal Stromal Cells for Cell Therapy. Current stem cell research & therapy. 2016;11(8):634–42. Epub 2015/10/27.

    Google Scholar 

  17. English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008;115(1):50–8. Epub 2007/11/21.

    Article  CAS  PubMed  Google Scholar 

  18. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008;111(3):1327–33. Epub 2007/10/24.

    Article  CAS  PubMed  Google Scholar 

  19. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol. 2009;37(5):604–15. Epub 2009/04/21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008;26(1):182–92. Epub 2007/09/29.

    Article  CAS  PubMed  Google Scholar 

  21. Noone C, Kihm A, English K, O’Dea S, Mahon BP. IFN-gamma stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells Dev. 2013;22(22):3003–14. Epub 2013/06/26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He H, Nagamura-Inoue T, Takahashi A, Mori Y, Yamamoto Y, Shimazu T, et al. Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro. Int J Hematol. 2015;102(3):368–78. Epub 2015/08/01.

    Article  CAS  PubMed  Google Scholar 

  23. Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton’s Jelly of umbilical cord. Methods Cell Biol. 2008;86:101–19. Epub 2008/04/30.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011;272(1):33–8. Epub 2011/10/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokiko Nagamura-Inoue M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagamura-Inoue, T. (2018). A New Prospective Cell Therapy for Neonatal Brain Injury. In: Shintaku, H., Oka, A., Nabetani, M. (eds) Cell Therapy for Perinatal Brain Injury. Springer, Singapore. https://doi.org/10.1007/978-981-10-1412-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1412-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1411-6

  • Online ISBN: 978-981-10-1412-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics