Skip to main content

Clinical Trial of Autologous Cord Blood Cell Therapy for Neonatal Hypoxic Ischemic Encephalopathy (HIE)

  • Chapter
  • First Online:
Cell Therapy for Perinatal Brain Injury

Abstract

Cell-based therapy is attracting attention not only for its regenerative property but also for its long therapeutic time window. A growing number of studies in animal models with brain injuries have shown that cell therapies are beneficial. Among the variety of cell types to be used for cell therapies, autologous umbilical cord blood cells (UCBCs) are the most feasible; UCB contains several types of stem cells, the collection of the UCB is totally noninvasive and no ethical issues are involved, and UCBCs have no tumorigenicity. More than 20 preclinical studies have examined the effects of human UCBCs in models of neonatal brain injury; the majority of the studies were conducted in a rodent model of hypoxia-ischemia. Systemic administration of mononuclear fraction of UCB is the most extensively explored, and most of the studies have shown beneficial effects. Intravenous infusion of autologous non-cryopreserved volume- and red blood cell-reduced UCB is the most feasible method for cell therapy, especially when used at the acute phase of acute onset diseases. Fewer than ten clinical studies, including ours, using UCB for newborns with acute brain injury have been reported or listed on open registration websites, and only a few of the studies have reported the results, proving safety and feasibility and implying efficacy. No randomized control studies have been reported with respect to cell therapies during the newborn period. Further preclinical studies to optimize the treatment protocol and clinical trials to prove efficacy are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dammann O, Ferriero D, Gressens P. Neonatal encephalopathy or hypoxic-ischemic encephalopathy? Appropriate terminology matters. Pediatr Res. 2011;70:1–2.

    Article  PubMed  Google Scholar 

  2. Volpe JJ. Neonatal encephalopathy: an inadequate term for hypoxic-ischemic encephalopathy. Ann Neurol. 2012;72:156–66.

    Article  PubMed  Google Scholar 

  3. van Handel M, Swaab H, de Vries LS, Jongmans MJ. Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review. Eur J Pediatr. 2007;166:645–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lindstrom K, Lagerroos P, Gillberg C, Fernell E. Teenage outcome after being born at term with moderate neonatal encephalopathy. Pediatr Neurol. 2006;35:268–74.

    Article  PubMed  Google Scholar 

  5. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005;365:663–70.

    Article  PubMed  Google Scholar 

  6. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. National Institute of Child H, Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    Article  CAS  PubMed  Google Scholar 

  7. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.

    Article  PubMed  Google Scholar 

  8. Castillo-Melendez M, Yawno T, Jenkin G, Miller SL. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci. 2013;7:194.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liao Y, Cotten M, Tan S, Kurtzberg J, Cairo MS. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant. 2013;48:890–900.

    Article  CAS  PubMed  Google Scholar 

  10. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817–26.

    Article  PubMed  Google Scholar 

  11. Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8:1193–201.

    Article  CAS  PubMed  Google Scholar 

  12. Mendez-Otero R, de Freitas GR, Andre C, de Mendonca ML, Friedrich M, Oliveira-Filho J. Potential roles of bone marrow stem cells in stroke therapy. Regen Med. 2007;2:417–23.

    Article  CAS  PubMed  Google Scholar 

  13. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35:2385–9.

    Article  PubMed  Google Scholar 

  14. Sarnowska A, Braun H, Sauerzweig S, Reymann KG. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue. Exp Neurol. 2009;215:317–27.

    Article  CAS  PubMed  Google Scholar 

  15. Tsuji M, Johnston MV. Cell-based therapies in neonatal stroke. In: Hess DC, editor. Cell therapy for brain injury. Switzerland: Springer International; 2015. p. 321–49.

    Chapter  Google Scholar 

  16. Elsayed MH, Hogan TP, Shaw PL, Castro AJ. Use of fetal cortical grafts in hypoxic-ischemic brain injury in neonatal rats. Exp Neurol. 1996;137:127–41.

    Article  CAS  PubMed  Google Scholar 

  17. Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59:244–9.

    Article  PubMed  Google Scholar 

  18. Yasuhara T, Hara K, Maki M, Mays RW, Deans RJ, Hess DC, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab. 2008;28:1804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsuji M, Taguchi A, Ohshima M, Kasahara Y, Sato Y, Tsuda H, et al. Effects of intravenous administration of umbilical cord blood CD34+ cells in a mouse model of neonatal stroke. Neuroscience. 2014;263:148–58.

    Article  CAS  PubMed  Google Scholar 

  20. Bennet L, Tan S, Van den Heuij L, Derrick M, Groenendaal F, van Bel F, et al. Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol. 2012;71:589–600.

    Article  PubMed  Google Scholar 

  21. Beam D, Poe MD, Provenzale JM, Szabolcs P, Martin PL, Prasad V, et al. Outcomes of unrelated umbilical cord blood transplantation for x-linked adrenoleukodystrophy. Biol Blood Marrow Transplant. 2007;13:665–74.

    Article  PubMed  Google Scholar 

  22. Peters C, Shapiro EG, Anderson J, Henslee-Downey PJ, Klemperer MR, Cowan MJ, et al. Hurler syndrome: II. Outcome of HLA-genotypically identical sibling and hla-haploidentical related donor bone marrow transplantation in fifty-four children. The storage disease collaborative study group. Blood. 1998;91:2601–8.

    CAS  PubMed  Google Scholar 

  23. Peters C, Charnas LR, Tan Y, Ziegler RS, Shapiro EG, DeFor T, et al. Cerebral x-linked adrenoleukodystrophy: tThe international hematopoietic cell transplantation experience from 1982 to 1999. Blood. 2004;104:881–8.

    Article  CAS  PubMed  Google Scholar 

  24. Aldenhoven H, Kurtzberg J. Cord blood is the optimal graft source for the treatment of pediatric patients with lysosomal storage diseases: clinical outcomes and future directions. Cytotherapy. 2015;17:765–74.

    Article  CAS  PubMed  Google Scholar 

  25. Staba SL, Escolar ML, Poe M, Kim Y, Martin PL, Szabolcs P, et al. Cord-blood transplants from unrelated donors in patients with Hurler's syndrome. N Engl J Med. 2004;350:1960–9.

    Article  CAS  PubMed  Google Scholar 

  26. Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci U S A. 2003;100:1364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moser HW, Mahmood A. New insights about hematopoietic stem cell transplantation in adrenoleukodystrophy. Arch Neurol. 2007;64:631–2.

    Article  PubMed  Google Scholar 

  28. Schönberger S, Roerig P, Schneider DT, Reifenberger G, Gobel U, Gartner J. Genotype and protein expression after bone marrow transplantation for adrenoleukodystrophy. Arch Neurol. 2007;64:651–7.

    Article  PubMed  Google Scholar 

  29. Sun J, Allison J, McLaughlin C, Sledge L, Waters-Pick B, Wease S, et al. Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50:1980–7.

    Article  PubMed  Google Scholar 

  30. Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31:581–91.

    Article  CAS  PubMed  Google Scholar 

  31. Bae SH, Lee HS, Kang MS, Strupp BJ, Chopp M, Moon J. The levels of pro-inflammatory factors are significantly decreased in cerebral palsy patients following an allogeneic umbilical cord blood cell transplant. Int J Stem Cells. 2012;5:31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jensen A, Hamelmann E. First autologous cell therapy of cerebral palsy caused by hypoxic-ischemic brain damage in a child after cardiac arrest-individual treatment with cord blood. Case Rep Transplant. 2013:951827.

    Google Scholar 

  33. Lee YH, Choi KV, Moon JH, Jun HJ, Kang HR, Oh SI, et al. Safety and feasibility of countering neurological impairment by intravenous administration of autologous cord blood in cerebral palsy. J Transl Med. 2012;10:58.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen L, Huang H, Xi H, Xie Z, Liu R, Jiang Z, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial. Cell Transplant. 2010;19:185–91.

    Article  PubMed  Google Scholar 

  35. Cotten CM, Murtha AP, Goldberg RN, Grotegut CA, Smith PB, Goldstein RF, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973–9. e971

    Article  PubMed  Google Scholar 

  36. Javed MJ, Mead LE, Prater D, Bessler WK, Foster D, Case J, et al. Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr Res. 2008;64:68–73.

    Article  PubMed  Google Scholar 

  37. Ligi I, Simoncini S, Tellier E, Vassallo PF, Sabatier F, Guillet B, et al. Sswitch toward angiostatic gene expression impairs the angiogenic properties of endothelial progenitor cells in low birth weight preterm infants. Blood. 2011;118:1699–709.

    Article  CAS  PubMed  Google Scholar 

  38. Aly H, Mohsen L, Badrawi N, Gabr H, Ali Z, Akmal D. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia. J Perinatol. 2012;32:671–6.

    Article  CAS  PubMed  Google Scholar 

  39. Phelan JP, Korst LM, Ahn MO, Martin GI. Neonatal nucleated red blood cell and lymphocyte counts in fetal brain injury. Obstet Gynecol. 1998;91:485–9.

    CAS  PubMed  Google Scholar 

  40. Hanna N, Graboski S, Laskin DL, Weinberger B. Effects of ibuprofen and hypoxia on neutrophil apoptosis in neonates. Biol Neonate. 2004;86:235–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tsuji M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuji, M., Shintaku, H. (2018). Clinical Trial of Autologous Cord Blood Cell Therapy for Neonatal Hypoxic Ischemic Encephalopathy (HIE). In: Shintaku, H., Oka, A., Nabetani, M. (eds) Cell Therapy for Perinatal Brain Injury. Springer, Singapore. https://doi.org/10.1007/978-981-10-1412-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1412-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1411-6

  • Online ISBN: 978-981-10-1412-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics