Skip to main content

Morphology, Development, and Neurotrophic Regulation of Cochlear Afferent Innervation

  • Chapter
  • First Online:
Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

  • 956 Accesses

Abstract

Spiral ganglion neurons (SGNs) are primary sensory neurons of the auditory system that send auditory information encoded by the inner ear to the central nervous system. The success of cochlear implant therapy is totally dependent on the status of SGN function. Therefore, information regarding the neurogenesis, survival, and neurite growth of SGNs is important not only to understand the pathophysiology of sensorineural hearing loss but also to improve cochlear implant therapy. SGNs are anatomically and functionally divided into two subtypes, type I and type II. Type I SGNs connecting inner hair cells contribute to the transmission of sound information into the central auditory pathway, while type II SGNs connecting outer hair cells are involved in active tuning of frequency in the cochlea. In the developing cochlea, the survival and neurite formation of SGNs are strongly regulated by neurotrophic factors, especially neurotrophin 3 (NT-3) and brain-derived neurotrophic factor (BDNF). Also, in the adult cochlea, the loss of hair cells induces secondary loss of SGNs presumably because of a loss of neurotrophic support. When the deafened ear is treated with exogenous BDNF or NT3, there is a significant enhancement of SGN survival and resprouting of neurites. Therefore, chronic application of neurotrophic factors in the cochlea may improve the efficacy of cochlear implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res. 2011;278:21–33. doi:10.1016/j.heares.2011.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delacroix L, Malgrange B. Cochlear afferent innervation development. Hear Res. 2015;330:157–69. doi:10.1016/j.heares.2015.07.015.

    Article  PubMed  Google Scholar 

  3. Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res. 2012;288:19–33. doi:10.1016/j.heares.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  4. Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C’s of neurotrophins in the cochlea. Anat Rec (Hoboken). 2012;295:1877–95. doi:10.1002/ar.22587.

    Article  CAS  Google Scholar 

  5. Budenz CL, Pfingst BE, Raphael Y. The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec (Hoboken). 2012;295:1896–908. doi:10.1002/ar.22586.

    Article  CAS  Google Scholar 

  6. Spoendlin H, Schrott A. Quantitative evaluation of the human cochlear nerve. Acta Otolaryngol Suppl. 1990;470:61–70.

    CAS  PubMed  Google Scholar 

  7. Ishiyama G, Geiger C, Lopez IA, Ishiyama A. Spiral and vestibular ganglion estimates in archival temporal bones obtained by design based stereology and Abercrombie methods. J Neurosci Methods. 2011;196:76–80. doi:10.1016/j.jneumeth.2011.01.001.

    Article  PubMed  Google Scholar 

  8. Tang Y, Lopez I, Ishiyama A. Application of unbiased stereology on archival human temporal bone. Laryngoscope. 2002;112:526–33. doi:10.1097/00005537-200203000-00022.

    Article  PubMed  Google Scholar 

  9. Hall RD, Massengill JL. The number of primary auditory afferents in the rat. Hear Res. 1997;103:75–84. doi:10.1016/S0378-5955(96)00166-9.

    Article  CAS  PubMed  Google Scholar 

  10. Keithley EM, Feldman ML. Spiral ganglion cell counts in an age-graded series of rat cochleas. J Comp Neurol. 1979;188:429–42. doi:10.1002/cne.901880306.

    Article  CAS  PubMed  Google Scholar 

  11. Perkins RE, Morest DK. A study of cochlear innervation patterns in cats and rats with the Golgi method and Nomarkski Optics. J Comp Neurol. 1975;163:129–58. doi:10.1002/cne.901630202.

    Article  CAS  PubMed  Google Scholar 

  12. Simmons DD, Manson-Gieseke L, Hendrix TW, Morris K, Williams SJ. Postnatal maturation of spiral ganglion neurons: a horseradish peroxidase study. Hear Res. 1991;55:81–91. doi:10.1016/0378-5955(91)90094-P.

    Article  CAS  PubMed  Google Scholar 

  13. Toesca A. Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci Lett. 1996;221:21–4. doi:10.1016/S0304-3940(96)13273-0.

    Article  CAS  PubMed  Google Scholar 

  14. Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci. 2002;25:51–101. doi:10.1146/annurev.neuro.25.112701.142849.

    Article  CAS  PubMed  Google Scholar 

  15. Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, et al. Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci. 2006;26:1991–9. doi:10.1523/JNEUROSCI.5055-05.2006.

    Article  CAS  PubMed  Google Scholar 

  16. Pujol R, Lavigne-Rebillard M, Lenoir M. Development of sensory and neural structures in the mammalian cochlea. In: Rubel EW, Popper AN, Fay RR, editors. Development of auditory system. New York: Springer; 1998. p. 146–92.

    Chapter  Google Scholar 

  17. Rusznak Z, Szucs G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch. 2009;457:1303–25. doi:10.1007/s00424-008-0586-2.

    Article  CAS  PubMed  Google Scholar 

  18. Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev. 2011;6:33. doi:10.1186/1749-8104-6-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafidi A. Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Res. 1998;805:181–90. doi:10.1016/S0006-8993(98)00448-X.

    Article  CAS  PubMed  Google Scholar 

  20. Berglund AM, Ryugo DK. Hair cell innervation by spiral ganglion neurons in the mouse. J Comp Neurol. 1987;255:560–70. doi:10.1002/cne.902550408.

    Article  CAS  PubMed  Google Scholar 

  21. Echteler SM. Developmental segregation in the afferent projections to mammalian auditory hair cells. Proc Natl Acad Sci U S A. 1992;89:6324–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang LC, Thorne PR, Housley GD, Montgomery JM. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development. 2007;134:2925–33. doi:10.1242/dev.001925.

    Article  CAS  PubMed  Google Scholar 

  23. Froud KE, Wong AC, Cederholm JM, Klugmann M, Sandow SL, Julien JP, et al. Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nat Commun. 2015;6:7115. doi:10.1038/ncomms8115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jagger DJ, Housley GD. Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. J Physiol. 2003;552:525–33. doi:10.1113/jphysiol.2003.052589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thiers FA, Nadol Jr JB, Liberman MC. Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea. J Assoc Res Otolaryngol. 2008;9:477–89. doi:10.1007/s10162-008-0135-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brown MC, Ledwith 3rd JV. Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear Res. 1990;49:105–18. doi:10.1016/0378-5955(90)90098-A.

    Article  CAS  PubMed  Google Scholar 

  27. Morgan YV, Ryugo DK, Brown MC. Central trajectories of type II (thin) fibers of the auditory nerve in cats. Hear Res. 1994;79:74–82. doi:10.1016/0378-5955(94)90128-7.

    Article  CAS  PubMed  Google Scholar 

  28. Lim R, Brichta AM. Anatomical and physiological development of the human inner ear. Hear Res. 2016. doi:10.1016/j.heares.2016.02.004.

    PubMed  Google Scholar 

  29. Nishikori T, Hatta T, Kawauchi H, Otani H. Apoptosis during inner ear development in human and mouse embryos: an analysis by computer-assisted three-dimensional reconstruction. Anat Embryol (Berl). 1999;200:19–26. doi:10.1007/s004290050255.

    Article  CAS  Google Scholar 

  30. Martin P, Swanson GJ. Descriptive and experimental-analysis of the epithelial remodellings that control semicircular canal formation in the developing mouse inner-ear. Dev Biol. 1993;159:549–58. doi:10.1006/dbio.1993.1263.

    Article  CAS  PubMed  Google Scholar 

  31. Sher AE. The embryonic and postnatal development of the inner ear of the mouse. Acta Otolaryngol Suppl. 1971;285:1–77. doi:10.3109/00016487109127849.

    CAS  PubMed  Google Scholar 

  32. Kikuchi T, Tonosaki A, Takasaka T. Development of apical-surface structures of mouse otic placode. Acta Otolaryngol. 1988;106:200–7. doi:10.3109/00016488809106426.

    Article  CAS  PubMed  Google Scholar 

  33. Bissonnette JP, Fekete DM. Standard atlas of the gross anatomy of the developing inner ear of the chicken. J Comp Neurol. 1996;368:620–30. doi:10.1002/(SICI)1096-9861(19960513)368:4<620::AID-CNE12>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  34. Lang H, Bever MM, Fekete DM. Cell proliferation and cell death in the developing chick inner ear: spatial and temporal patterns. J Comp Neurol. 2000;417:205–20. doi:10.1002/(SICI)1096-9861(20000207)417:2<205::AID-CNE6>3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  35. Represa JJ, Moro JA, Gato A, Pastor F, Barbosa E. Patterns of epithelial cell death during early development of the human inner ear. Ann Otol Rhinol Laryngol. 1990;99:482–8. doi:10.1177/000348949009900613.

    Article  CAS  PubMed  Google Scholar 

  36. Torres M, Giraldez F. The development of the vertebrate inner ear. Mech Dev. 1998;71:5–21. doi:10.1016/S0925-4773(97)00155-X.

    Article  CAS  PubMed  Google Scholar 

  37. Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA. Cochleovestibular nerve development is integrated with migratory neural crest cells. Dev Biol. 2014;385:200–10. doi:10.1016/j.ydbio.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  38. D’Amico-Martel A, Noden DM. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat. 1983;166:445–68. doi:10.1002/aja.1001660406.

    Article  PubMed  Google Scholar 

  39. Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development. 2011;138:5403–14. doi:10.1242/dev.069849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol. 1967;220(Suppl:Suppl):1–44. doi:10.3109/00016486709127790.

    Google Scholar 

  41. Pechriggl EJ, Bitsche M, Glueckert R, Rask-Andersen H, Blumer MJ, Schrott-Fischer A, et al. Development of the innervation of the human inner ear. Dev Neurobiol. 2015;75:683–702. doi:10.1002/dneu.22242.

    Article  CAS  PubMed  Google Scholar 

  42. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, et al. Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn. 2005;234:633–50. doi:10.1002/dvdy.20551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruce LL, Kingsley J, Nichols DH, Fritzsch B. The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci. 1997;15:671–92. doi:10.1016/S0736-5748(96)00120-7.

    Article  CAS  PubMed  Google Scholar 

  44. Fritzsch B. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull. 2003;60:423–33.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rueda J, de la Sen C, Juiz JM, Merchan JA. Neuronal loss in the spiral ganglion of young rats. Acta Otolaryngol. 1987;104:417–21. doi:10.3109/00016488709128269.

    Article  CAS  PubMed  Google Scholar 

  46. Echteler SM, Nofsinger YC. Development of ganglion cell topography in the postnatal cochlea. J Comp Neurol. 2000;425:436–46. doi:10.1002/1096-9861(20000925)425:3<436::AID-CNE8>3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  47. Echteler SM, Magardino T, Rontal M. Spatiotemporal patterns of neuronal programmed cell death during postnatal development of the gerbil cochlea. Brain Res Dev Brain Res. 2005;157:192–200. doi:10.1016/j.devbrainres.2005.04.004.

    Article  CAS  PubMed  Google Scholar 

  48. Wiechers B, Gestwa G, Mack A, Carroll P, Zenner HP, Knipper M. A changing pattern of brain-derived neurotrophic factor expression correlates with the rearrangement of fibers during cochlear development of rats and mice. J Neurosci. 1999;19:3033–42.

    CAS  PubMed  Google Scholar 

  49. Pettmann B, Henderson CE. Neuronal cell death. Neuron. 1998;20:633–47. doi:10.1016/S0896-6273(00)81004-1.

    Article  CAS  PubMed  Google Scholar 

  50. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501. doi:10.1146/annurev.ne.14.030191.002321.

    Article  CAS  PubMed  Google Scholar 

  51. Wheeler EF, Bothwell M, Schecterson LC, von Bartheld CS. Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear Res. 1994;73:46–56. doi:10.1016/0378-5955(94)90281-X.

    Article  CAS  PubMed  Google Scholar 

  52. Kondo K, Pak K, Chavez E, Mullen L, Euteneuer S, Ryan AF. Changes in responsiveness of rat spiral ganglion neurons to neurotrophins across age: differential regulation of survival and neuritogenesis. Int J Neurosci. 2013;123:465–75. doi:10.3109/00207454.2013.764497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Kondo K, Ushio M, Kaga K, Ryan AF, Yamasoba T. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology. Cell Tissue Res. 2013;351:15–27. doi:10.1007/s00441-012-1526-1.

    Article  CAS  PubMed  Google Scholar 

  54. Snider WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994;77:627–38. doi:10.1016/0092-8674(94)90048-5.

    Article  PubMed  Google Scholar 

  55. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237:1154–62. doi:10.1126/science.3306916.

    Article  CAS  PubMed  Google Scholar 

  56. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609–42. doi:10.1146/annurev.biochem.72.121801.161629.

    Article  CAS  PubMed  Google Scholar 

  57. Friedman WJ, Greene LA. Neurotrophin signaling via Trks and p75. Exp Cell Res. 1999;253:131–42. doi:10.1006/excr.1999.4705.

    Article  CAS  PubMed  Google Scholar 

  58. Barde YA. Trophic factors and neuronal survival. Neuron. 1989;2:1525–34. doi:10.1016/0896-6273(89)90040-8.

    Article  CAS  PubMed  Google Scholar 

  59. Mou K, Hunsberger CL, Cleary JM, Davis RL. Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J Comp Neurol. 1997;386:529–39. doi:10.1002/(SICI)1096-9861(19971006)386:4<529::AID-CNE1>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  60. Buchman VL, Davies AM. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development. 1993;118:989–1001.

    CAS  PubMed  Google Scholar 

  61. Davies AM. Neurotrophins: neurotrophic modulation of neurite growth. Curr Biol. 2000;10:R198–200. doi:10.1016/S0960-9822(00)00351-1.

    Article  CAS  PubMed  Google Scholar 

  62. Cohen-Cory S, Fraser SE. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature. 1995;378:192–6. doi:10.1038/378192a0.

    Article  CAS  PubMed  Google Scholar 

  63. Segal RA, Pomeroy SL, Stiles CD. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci. 1995;15:4970–81.

    CAS  PubMed  Google Scholar 

  64. Lentz SI, Knudson CM, Korsmeyer SJ, Snider WD. Neurotrophins support the development of diverse sensory axon morphologies. J Neurosci. 1999;19:1038–48.

    CAS  PubMed  Google Scholar 

  65. Snider WD. Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals. J Neurosci. 1988;8:2628–34.

    CAS  PubMed  Google Scholar 

  66. Kimpinski K, Campenot RB, Mearow K. Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures. J Neurobiol. 1997;33:395–410. doi:10.1002/(SICI)1097-4695(199710)33:4<395::AID-NEU5>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  67. Orike N, Thrasivoulou C, Wrigley A, Cowen T. Differential regulation of survival and growth in adult sympathetic neurons: an in vitro study of neurotrophin responsiveness. J Neurobiol. 2001;47:295–305. doi:10.1002/neu.1036.

    Article  CAS  PubMed  Google Scholar 

  68. Scott SA, Davies AM. Age-related effects of nerve growth factor on the morphology of embryonic sensory neurons in vitro. J Comp Neurol. 1993;337:277–85. doi:10.1002/cne.903370208.

    Article  CAS  PubMed  Google Scholar 

  69. Ulupinar E, Jacquin MF, Erzurumlu RS. Differential effects of NGF and NT-3 on embryonic trigeminal axon growth patterns. J Comp Neurol. 2000;425:202–18. doi:10.1002/1096-9861(20000918)425:2<202::AID-CNE4>3.0.CO;2-T.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M. Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci U S A. 1992;89:9915–9. doi:10.1073/pnas.89.20.9915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schecterson LC, Bothwell M. Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hear Res. 1994;73:92–100. doi:10.1016/0378-5955(94)90286-0.

    Article  CAS  PubMed  Google Scholar 

  72. Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M. Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res. 1993;65:69–78. doi:10.1016/0378-5955(93)90202-C.

    Article  CAS  PubMed  Google Scholar 

  73. Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J. Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res. 1994;75:131–44. doi:10.1016/0378-5955(94)90064-7.

    Article  CAS  PubMed  Google Scholar 

  74. Pirvola U, Hallbook F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J. Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol. 1997;33:1019–33.

    Article  CAS  PubMed  Google Scholar 

  75. Knipper M, Zimmermann U, Rohbock K, Kopschall I, Zenner HP. Expression of neurotrophin receptor trkB in rat cochlear hair cells at time of rearrangement of innervation. Cell Tissue Res. 1996;283:339–53. doi:10.1007/s004410050545.

    Article  CAS  PubMed  Google Scholar 

  76. Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, et al. Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci. 2001;21:6170–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cochran SL, Stone JS, Bermingham-McDonogh O, Akers SR, Lefcort F, Rubel EW. Ontogenetic expression of trk neurotrophin receptors in the chick auditory system. J Comp Neurol. 1999;413:271–88. doi:10.1002/(SICI)1096-9861(19991018)413:2<271::AID-CNE8>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  78. Vazquez E, Van de Water TR, Del Valle M, Vega JA, Staecker H, Giraldez F, et al. Pattern of trkB protein-like immunoreactivity in vivo and the in vitro effects of brain-derived neurotrophic factor (BDNF) on developing cochlear and vestibular neurons. Anat Embryol (Berl). 1994;189:157–67. doi:10.1007/BF00185774.

    Article  CAS  Google Scholar 

  79. Zheng JL, Stewart RR, Gao WQ. Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity. J Neurosci. 1995;15:5079–87.

    CAS  PubMed  Google Scholar 

  80. Sugawara M, Murtie JC, Stankovic KM, Liberman MC, Corfas G. Dynamic patterns of neurotrophin 3 expression in the postnatal mouse inner ear. J Comp Neurol. 2007;501:30–7. doi:10.1002/cne.21227.

    Article  CAS  PubMed  Google Scholar 

  81. Fritzsch B, Farinas I, Reichardt LF. Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci. 1997;17:6213–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fritzsch B, Barbacid M, Silos-Santiago I. The combined effects of trkB and trkC mutations on the innervation of the inner ear. Int J Dev Neurosci. 1998;16:493–505. doi:10.1016/S0736-5748(98)00043-4.

    Article  CAS  PubMed  Google Scholar 

  83. Ernfors P, Van De Water T, Loring J, Jaenisch R. Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron. 1995;14:1153–64. doi:10.1016/0896-6273(95)90263-5.

    Article  CAS  PubMed  Google Scholar 

  84. Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M. Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci. 1997;9:2045–56. doi:10.1111/j.1460-9568.1997.tb01372.x.

    Article  CAS  PubMed  Google Scholar 

  85. Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM, Yancopoulos GD. Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development. 1996;122:1965–73.

    CAS  PubMed  Google Scholar 

  86. Coppola V, Kucera J, Palko ME, Martinez-De Velasco J, Lyons WE, Fritzsch B, et al. Dissection of NT3 functions in vivo by gene replacement strategy. Development. 2001;128:4315–27.

    CAS  PubMed  Google Scholar 

  87. Ylikoski J, Pirvola U, Virkkala J, Suvanto P, Liang XQ, Magal E, et al. Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear Res. 1998;124:17–26. doi:10.1016/S0378-5955(98)00095-1.

    Article  CAS  PubMed  Google Scholar 

  88. Bailey EM, Green SH. Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci. 2014;34:13110–26. doi:10.1523/JNEUROSCI.1014-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kanzaki S, Stover T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, et al. Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol. 2002;454:350–60. doi:10.1002/cne.10480.

    Article  CAS  PubMed  Google Scholar 

  90. Wei D, Jin Z, Jarlebark L, Scarfone E, Ulfendahl M. Survival, synaptogenesis, and regeneration of adult mouse spiral ganglion neurons in vitro. Dev Neurobiol. 2007;67:108–22. doi:10.1002/dneu.20336.

    Article  CAS  PubMed  Google Scholar 

  91. Hartnick CJ, Staecker H, Malgrange B, Lefebvre PP, Liu W, Moonen G, et al. Neurotrophic effects of BDNF and CNTF, alone and in combination, on postnatal day 5 rat acoustic ganglion neurons. J Neurobiol. 1996;30:246–54. doi:10.1002/(SICI)1097-4695(199606)30:2<246::AID-NEU6>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  92. Vieira M, Christensen BL, Wheeler BC, Feng AS, Kollmar R. Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice. Hear Res. 2007;230:17–23. doi:10.1016/j.heares.2007.03.005.

    Article  CAS  PubMed  Google Scholar 

  93. Whitlon DS, Grover M, Tristano J, Williams T, Coulson MT. Culture conditions determine the prevalence of bipolar and monopolar neurons in cultures of dissociated spiral ganglion. Neuroscience. 2007;146:833–40. doi:10.1016/j.neuroscience.2007.01.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Avila MA, Varela-Nieto I, Romero G, Mato JM, Giraldez F, Van De Water TR, et al. Brain-derived neurotrophic factor and neurotrophin-3 support the survival and neuritogenesis response of developing cochleovestibular ganglion neurons. Dev Biol. 1993;159:266–75. doi:10.1006/dbio.1993.1239.

    Article  PubMed  Google Scholar 

  95. Marzella PL, Gillespie LN, Clark GM, Bartlett PF, Kilpatrick TJ. The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro. Hear Res. 1999;138:73–80. doi:10.1016/S0378-5955(99)00152-5.

    Article  CAS  PubMed  Google Scholar 

  96. Hegarty JL, Kay AR, Green SH. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. J Neurosci. 1997;17:1959–70.

    CAS  PubMed  Google Scholar 

  97. Gillespie LN, Clark GM, Bartlett PF, Marzella PL. LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro. Neuroreport. 2001;12:275–9.

    Article  CAS  PubMed  Google Scholar 

  98. Malgrange B, Lefebvre P, Van de Water TR, Staecker H, Moonen G. Effects of neurotrophins on early auditory neurones in cell culture. Neuroreport. 1996;7:913–7.

    Article  CAS  PubMed  Google Scholar 

  99. Cafferty WB, Gardiner NJ, Gavazzi I, Powell J, McMahon SB, Heath JK, et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J Neurosci. 2001;21:7161–70.

    CAS  PubMed  Google Scholar 

  100. Leibinger M, Muller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci. 2009;29:14334–41. doi:10.1523/JNEUROSCI.2770-09.2009.

    Article  PubMed  Google Scholar 

  101. Hyatt Sachs H, Rohrer H, Zigmond RE. The conditioning lesion effect on sympathetic neurite outgrowth is dependent on gp130 cytokines. Exp Neurol. 2010;223:516–22. doi:10.1016/j.expneurol.2010.01.019.

    Article  CAS  PubMed  Google Scholar 

  102. Spoendlin H. Retrograde degeneration of the cochlear nerve. Acta Otolaryngol. 1975;79:266–75. doi:10.3109/00016487509124683.

    Article  CAS  PubMed  Google Scholar 

  103. Webster M, Webster DB. Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res. 1981;212:17–30. doi:10.1016/0006-8993(81)90028-7.

    Article  CAS  PubMed  Google Scholar 

  104. Koitchev K, Guilhaume A, Cazals Y, Aran JM. Spiral ganglion changes after massive aminoglycoside treatment in the guinea pig. Counts and ultrastructure. Acta Otolaryngol. 1982;94:431–8. doi:10.3109/00016488209128931.

    Article  CAS  PubMed  Google Scholar 

  105. Bichler E, Spoendlin H, Rauchegger H. Degeneration of cochlear neurons after amikacin intoxication in the rat. Arch Otorhinolaryngol. 1983;237:201–8. doi:10.1007/BF00453725.

    Article  CAS  PubMed  Google Scholar 

  106. Alam SA, Robinson BK, Huang J, Green SH. Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol. 2007;503:832–52. doi:10.1002/cne.21430.

    Article  CAS  PubMed  Google Scholar 

  107. Leake PA, Hradek GT. Cochlear pathology of long term neomycin induced deafness in cats. Hear Res. 1988;33:11–33. doi:10.1016/0378-5955(88)90018-4.

    Article  CAS  PubMed  Google Scholar 

  108. Nadol Jr JB. Degeneration of cochlear neurons as seen in the spiral ganglion of man. Hear Res. 1990;49:141–54. doi:10.1016/0378-5955(90)90101-T.

    Article  PubMed  Google Scholar 

  109. Nadol Jr JB. Patterns of neural degeneration in the human cochlea and auditory nerve: implications for cochlear implantation. Otolaryngol Head Neck Surg. 1997;117:220–8. doi:10.1016/S0194-5998(97)70178-5.

    Article  PubMed  Google Scholar 

  110. Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res. 2007;85:1959–69. doi:10.1002/jnr.21320.

    Article  CAS  PubMed  Google Scholar 

  111. Leake PA, Hradek GT, Hetherington AM, Stakhovskaya O. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol. 2011;519:1526–45. doi:10.1002/cne.22582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Landry TG, Wise AK, Fallon JB, Shepherd RK. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment. Hear Res. 2011;282:303–13. doi:10.1016/j.heares.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Glueckert R, Bitsche M, Miller JM, Zhu Y, Prieskorn DM, Altschuler RA, et al. Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol. 2008;507:1602–21. doi:10.1002/cne.21619.

    Article  PubMed  Google Scholar 

  114. Wise AK, Richardson R, Hardman J, Clark G, O’Leary S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol. 2005;487:147–65. doi:10.1002/cne.20563.

    Article  CAS  PubMed  Google Scholar 

  115. Agterberg MJ, Versnel H, de Groot JC, Smoorenburg GF, Albers FW, Klis SF. Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hear Res. 2008;244:25–34. doi:10.1016/j.heares.2008.07.004.

    Article  CAS  PubMed  Google Scholar 

  116. McGuinness SL, Shepherd RK. Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol. 2005;26:1064–72. doi:10.1097/01.mao.0000185063.20081.50.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, et al. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol. 2010;223:464–72. doi:10.1016/j.expneurol.2010.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kinoshita M, Kikkawa YS, Sakamoto T, Kondo K, Ishihara K, Konno T, et al. Safety, reliability, and operability of cochlear implant electrode arrays coated with biocompatible polymer. Acta Otolaryngol. 2015;135:320–7. doi:10.3109/00016489.2014.990580.

    Article  CAS  PubMed  Google Scholar 

  119. Kondo K. Neurogenesis and Differentiation of the spiral ganglion neurons MB ENT (Japanese). 2008;93:17–22.

    Google Scholar 

  120. Kondo K. Regeneration of the spiral ganglion neurons. J Clin Exp Med (Japanese). 2008;226:981–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kondo, K., Jin, Y., Kinoshita, M., Yamasoba, T., Kaga, K. (2017). Morphology, Development, and Neurotrophic Regulation of Cochlear Afferent Innervation. In: Kaga, K. (eds) Cochlear Implantation in Children with Inner Ear Malformation and Cochlear Nerve Deficiency. Modern Otology and Neurotology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1400-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1400-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1399-7

  • Online ISBN: 978-981-10-1400-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics