Skip to main content

Tropospheric Ozone: Impacts on Respiratory and Photosynthetic Processes

  • Chapter
  • First Online:
Plant Responses to Air Pollution

Abstract

Ozone is an important oxidant of the post-industrialised era. Numerous detrimental effects have been attributed to ozone on human health; plants too are gravely affected by its increasing concentration. Of about 15–16% of global temperature changes can be attributed to increase in tropospheric ozone levels in the present time. This chapter presents a review of effects on net primary productivity, photosynthesis and respiration of plants as a response to ozone exposure. In general, exposure to ozone decreases photosynthesis, increases dark respiration and decreases net primary productivity. These variations are however affected by other factors like level of exposure, age of plant and type of plant among many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change*. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118(9):1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28(8):1012–1020

    Article  CAS  Google Scholar 

  • Barnes RL (1972) Effects of chronic exposure to ozone on photosynthesis and respiration of pines. Environ Pollut (1970) 3(2):133–138

    Article  CAS  Google Scholar 

  • Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007) Nitrogen deposition but not ozone affects productivity and community composition of alpine grassland after 3 yr of treatment. New Phytol 175:523–534

    Article  CAS  PubMed  Google Scholar 

  • Burnett RT, Brook JR, Yung WT, Dales RE, Krewski D (1997) Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environ Res 72(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Glob Chang Biol 14:556–564

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Evans LS, Ting IP (1973) Ozone-induced membrane permeability changes. Am J Bot 60:155–162

    Article  CAS  Google Scholar 

  • Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M et al (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Change 73:345–373

    Article  CAS  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob. Chang Biol 14:2696–2708

    Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    Article  CAS  PubMed  Google Scholar 

  • Galant A, Koester RP, Ainsworth EA, Hicks LM, Jez JM (2012) From climate change to molecular response: redox proteomics of zone-induced responses in soybean. New Phytol 194:220e229

    Article  Google Scholar 

  • Karnosky D, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489e506

    Article  Google Scholar 

  • Keitel, A., & Arndt, U. (1983). Ozone-induced turgidity losses of tobacco (Nicotiana tabacum var. Bel W3)-an indication to rapid alterations of membrane permeability. Angewandte Botanik (Germany, FR)

    Google Scholar 

  • Lippmann M (1993) Use of human lung tissue for studies of structural changes associated with chronic ozone exposure: opportunities and critical issues. Environ Health Perspect 101(Suppl 4):209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luwe MWF, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Haberle KH (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/ spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–e1078

    Article  CAS  PubMed  Google Scholar 

  • Perchorowicz JT, Ting IP (1974) Ozone effects on plant cell permeability. Am J Bot 61:787–793

    Article  CAS  Google Scholar 

  • Reich PB (1983) Effects of low concentrations of O3 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73(2):291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–795

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Feng Z, Ort DR (2014) Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Sci 226:147–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kaur, H. (2016). Tropospheric Ozone: Impacts on Respiratory and Photosynthetic Processes. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_9

Download citation

Publish with us

Policies and ethics