Skip to main content

Air Pollutants and Photosynthetic Efficiency of Plants

  • Chapter
  • First Online:
Book cover Plant Responses to Air Pollution

Abstract

Absorption and accumulation/integration of air pollutants by leaves induce physiological and biochemical alterations in plants. Photosynthesis is the basic physiological event affected in plants exposed to air pollutants. Reduction in leaf area, closure of stomata and the damage to the photosynthetic apparatus limit the photosynthetic capacity of plants. High concentrations of sulphur dioxide (SO2), ozone (O3) and nitrogen oxides (NOx) induce stomatal closure limiting the availability of carbon dioxide (CO2) for photosynthesis. Reactive oxygen species (ROS) generated during oxidative stress damage photosynthetic apparatus via alteration in thylakoid structure and function. The photosynthetic electron transport, carboxylation efficiency of RuBisco and chlorophyll biosynthesis are the major processes negatively affecting the photosynthetic efficiency of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbaire PO (2009) Air pollution tolerance indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta state. Niger Int J Phys Sci 4:366–368

    CAS  Google Scholar 

  • Agbaire PO, Esiefarienrhe EJ (2009) Air pollution tolerance indices (apti) of some plants around Otorogun gas plant in Delta state. Niger Appl Sci Environ Manag 13(1):11–14

    Google Scholar 

  • Agrawal M, Deepak SS (2003) Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environ Pollut 121:189–197

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mungbean grown in periurban areas of Varanasi. Water Air Soil Pollut 169:239–254

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Serbin SP, Skoneczka JA, Philip A (2014) Using leaf optical properties to detect ozone effects on foliar biochemistry Townsend. Photosynth Res 119:65–76

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Alfarhan A, Aldjain I, Bokhari N, Al-Taisan W, Al-Rasheid K, Al-Quraishi S (2008) Photosynthetic responses of pea plants (Pisum sativum L. cv. Little marvel) exposed to climate change in Riyadh city, KSA. Afr J Biotechnol 7(15):2630–2636

    CAS  Google Scholar 

  • Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34

    Article  CAS  Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Atkinson CJ, Wookey PA, Mansfield TA (1991) Atmospheric pollution and the sensitivity of stomata on barley leaves to abscisic acid and carbon dioxide. New Phytol 117:535–541

    Article  CAS  Google Scholar 

  • Beckett KP, Freer-Smith P, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99(3):347–360

    Article  CAS  PubMed  Google Scholar 

  • Black VJ, Unsworth MH (1980) Stomatal responses to sulphur dioxide and vapor pressure deficit. J Exp 31:667–677

    CAS  Google Scholar 

  • Britz SJ, Robinson JM (2001) Chronic ozone exposure and photosynthate partitioning into starch in soybean leaves. Int J Plant Sci 162:111–117

    Article  CAS  Google Scholar 

  • Calatayud V, Cervero J, Sanz MJ (2007) Foliar, physiological and growth responses of four maple species exposed to ozone. Water Air Soil Pollut 185:239–254

    Article  CAS  Google Scholar 

  • Calatayud V, García-Breijo FJ, Cervero J, Reig-Armiñana J, Sanz MJ (2011) Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae. Ecotoxicol Environ Saf 74:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Castagna A, Nali C, Ciompi S, Lorenzini G, Soldatini GF, Ranieri A (2001) Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytol 152:223–229

    Article  CAS  Google Scholar 

  • Chauhan A, Joshi PC (2010) Effect of ambient air pollutants on wheat and mustard crops growing in the vicinity of urban and industrial areas. NY Sci J 3:52–60

    Google Scholar 

  • Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1–30

    Article  CAS  Google Scholar 

  • DeKok LJ (1990) Sulphur metabolism in plants exposed to atmospheric sulphur. In: Rennenberg H, Brunold C, DeKok LJ, Stulen I (eds) Sulphur nutrition and sulphur assimilation in higher plants, Fundamental, environment and agricultural aspects. SPB Academic Publishing, The Hague, pp 125–138

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power. Environ Pollut 156:11–15

    Article  CAS  PubMed  Google Scholar 

  • Dole Y (1988) Fluoride-induced enhancement and inhibition of photosynthesis in four taxa of Pinus. New Phytol 110:21–31

    Article  Google Scholar 

  • Evans LS, Gmor NF, Dacosta F (1997) Leaf surface and histological perturbations of leaves of Phaseolus vulgaris and Helianthus annuus after exposure to simulated acid rain. Am J Bot 4:304–313

    Google Scholar 

  • Farage PK, Long SP (1999) The effects of O3 fumigation during leaf development on photosynthesis of wheat and pea: an in vivo analysis. Photosynth Res 59:1–7

    Article  CAS  Google Scholar 

  • Farage PK, Long SP, Lechner EG, Baker NR (1991) The sequence of the change within the photosynthetic apparatus of wheat following short term exposure to ozone. Plant Physiol 95:529–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer A (2002) Effects of particulates. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Hoboken, pp 187–199

    Google Scholar 

  • Felzer BS, Cronin T, Reilly JM, Melillo JM, Wang Z (2007) Impacts of ozone on trees and crops. Compt Rendus Geosci 339:784–798

    Article  CAS  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta- analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Fiihrer G, Payer HD, Pfanz H (1993) Effects of air pollutants on the photosynthetic capacity of young Norway spruce trees. Response of single needle age classes during and after different treatments with O3, SO2, or NO2. Trees 8:85–92

    Google Scholar 

  • Fini A, Guidi L, Ferrini F, Brunetti C, Di Fernando M, Biricolti S, Pollastri S, Calamai L, Tattini M (2012) Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: an excess light stress affair? J Plant Physiol 169:929–939

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Srivastava D, Deshmukh K, Dubey P (2013) Effect of air pollution on chlorophyll content of leaves. Curr Agric Res 1, doi: http://dx.doi.org/10.12944/CARJ.1.2.04

    Google Scholar 

  • Gostin IN (2009) Air pollution effects on the leaf structure of some Fabaceae species. Not Bot Hort Agrobot Cluj 37(2):57–63

    Google Scholar 

  • Guderian R, Tingey DT, Rabe R (1985) Effects of photochemical oxidants on plants. In: Guderian R (ed) Air pollution by photochemical oxidants. Springer, Berlin, pp 129–334

    Chapter  Google Scholar 

  • Hassan IA (2006) Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica 44(2):312–315

    Article  CAS  Google Scholar 

  • Hassan IA (2010) Interactive effects of O3 and CO2 on growth, physiology of potato (Solanum tuberosum L.). World J Environ Sustain Dev 7:1–12

    Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied route to changes? Environ Pollut 55:453–463

    Article  CAS  Google Scholar 

  • Honour SL, Bell J, Nigel B, Ashenden TA, Cape J, Power N, Sally A (2009) Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environ Pollut 157:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007, synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Ismail IM, Basahi JM, Hassan IA (2014) Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Sci Total Environ 497–498:585–593

    Article  PubMed  CAS  Google Scholar 

  • Joshi N, Bora M (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Google Scholar 

  • Joshi PC, Swami A (2009) Air pollution induced changes in the photosynthetic pigments of selected plant species. J Environ Biol 30:295–298

    CAS  PubMed  Google Scholar 

  • Joshi N, Chauhan A, Joshi PC (2009) Impact of industrial air pollutants on some biochemical parameters and yield in wheat and mustard plants. Environmentalist 29:398–404

    Article  Google Scholar 

  • Jouraeva VA, Johnson DL, Hassett JP, Nowak DJ (2002) Differences in accumulation of PAHs and metals on the leaves of Tilia × euchlora and Pyrus calleryana. Environ Pollut 120(2):331–338

    Article  CAS  PubMed  Google Scholar 

  • Koocha H, Seyyed Nejad SM (2010) Some morphological changes and physiological responses due to air pollution in Prosopis juliflora plant. In: Proceedings of the 16th national and 4th international conference of biology, 4–6 November 2010, Mashhad, p 1414

    Google Scholar 

  • Kumar KA, Bhaskara Rao AV (2008) Physiological responses to fluoride in two cultivars of mulberry. World J Agric Sci 4(4):463–466

    Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Scharaudner M, Trost M, Heller W, Sandermann H Jr (1991) Biochemical plant response to ozone: I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MH (2003) Peroxidase and superoxide dismutase activities in fig leaves in response to ambient air pollution in a subtropical city. Arch Environ Contam Toxicol 45:168–176

    Article  CAS  PubMed  Google Scholar 

  • Li B, Xing D, Zhang L (2007) Involvement of NADPH oxidase in sulfur oxide- induced oxidative stress in plant cells. Natl Prod Rep 6:628–534

    CAS  Google Scholar 

  • Liu YJ, Ding H (2008) Variation in air pollution tolerance index of plants near a steel factory: implications for landscape-plant species selection for industrial areas. WSEAS Trans Environ Dev 4:24–32

    CAS  Google Scholar 

  • Liu N, Peng CL, Lin ZF, Zhang LL, Pan XP (2006) Changes in photosystem II activity and leaf reflectance features of several subtropical woody plants under simulated SO2 treatment. J Integr Plant Biol 48:1274–1286

    Article  CAS  Google Scholar 

  • Liu J, Zhang XL, Xu XF, Xu HH (2008) Comparison analysis of variation characteristics of SO2, NOx, O3 and PM2.5 between rural and urban areas, Beijing. Environ Sci 29:1059–1065

    CAS  Google Scholar 

  • Liu N, Lin ZF, Guan LL, Lin GZ, Peng CL (2009) Light acclimation and HSO3 – damage on photosynthetic apparatus of three subtropical forest species. Ecotoxicology 18(7):929–938

    Article  CAS  PubMed  Google Scholar 

  • Liu KH, Mansell RS, Rhue RD (2010) Cation removal during application of acid solution into air dry soil columns. Soil Sci Soc J 4:1747–1753

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Lorenzini G, Nali C, Ligasacchi G, Ambrogi R (1999) Effects of ozone on photosynthesis of Mediterranean urban ornamental plants. Acta Hortic 496:335–338

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier-Maercker U, Koch W (1992) The effect of air pollution on the mechanism of stomatal control. Trees 7:12–25

    Article  Google Scholar 

  • Malhotra SS, Khan A (1984) In: Treshow M (ed) Biochemical and physiological impact of major pollutants air pollution and plant life. John Wiley and Sons, London, England

    Google Scholar 

  • McKee IF, Farage PK, Long SP (1995) The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat. Photosynth Res 45:111–119

    Article  CAS  PubMed  Google Scholar 

  • Mulholland BJ, Craigon J, Black CR, Colls JJ, Atherton J, Landon G (1997) Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.). J Exp Bot 48:1853–1863

    Article  CAS  Google Scholar 

  • Muneer S, Kim T, Choi B, Lee B, Lee JH (2013) Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate–glutathione pathway to induce Fragaria annasa as a hyperaccumulator. Redox Biol 17:91–98

    Google Scholar 

  • Navakoudisa E, Lu¨tzb C, Langebartelsc C, Lu¨tz-Meindld U, Kotzabasisa K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta 1621:160–169

    Article  CAS  Google Scholar 

  • Nawrot B, Dzieranowski K, Gawroski SW (2011) Accumulation of particulate matter, PAHs and heavy metals in canopy of small-leaved lime. Environ Prot Nat Res 49:52–60

    Google Scholar 

  • Niu J, Feng Z, Zhang W, Zhao P, Wang X (2014) Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedlings exposed to elevated O3. PLoS ONE 9(6):e98572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noormets A, McDonald EP, Dickson RE, Kruger EL, Sober A, Isebrands JG, Karnosky DF (2001) The effect of elevated carbon dioxide and ozone on leaf- and branch-level photosynthesis and potential plant-level carbon gain in aspen. Trees-Struct Funct 15:262–270

    Article  CAS  Google Scholar 

  • Noormets A, Kull O, Soˆber A, Kubiske ME, Karnosky DF (2010) Elevated CO2 response of photosynthesis depends on ozone concentration in aspen. Environ Pollut 158:992–999

    Article  CAS  PubMed  Google Scholar 

  • Odiyi O, Bamidele JF (2014) Effects of simulated acid rain on growth and yield of Cassava Manihot esculenta (Crantz). J Agric Sci 6:96–101

    Google Scholar 

  • Parshina OV, Rygalov VY (1999) Structural and functional changes in photosynthetic apparatus of wheat under exposure to sulfur dioxide fumes. Life Support Biosphys Sci 6(3):199–207

    CAS  Google Scholar 

  • Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F (2003) Ozone induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol 133:1122–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini E (2014) PSII photochemistry is the primary target of oxidative stress imposed by ozone in Tilia americana. Urban For Urban Green 13:94–102

    Article  Google Scholar 

  • Pellegrini E, Carucci MG, Campanella A, Lorenzini G, Nali C (2011a) Ozone stress in Melissa officinalis plants assessed by photosynthetic function. Environ Exp Bot 73:94–101

    Article  CAS  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011b) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    Article  CAS  Google Scholar 

  • Pellegrini E, Campanella A, Paolocci M, Trivellini A, Gennai C, Muganu M et al (2015) Functional leaf traits and diurnal dynamics of photosynthetic parameters predict the behavior of grapevine varieties towards ozone. PLoS ONE 10(8):e0135056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linkens HF, Jackson JF (eds) Modern methods of plant analysis NS Vol 9. Gases in plant and microbial cells. Springer Verlag, Berlin/ Heidelberg, pp 322–343

    Chapter  Google Scholar 

  • Plazek A, Rapacz M, Skoczowski A (2000) Effects of ozone fumigation on photosynthesis and membrane permeability in leaves of spring barley, meadow fescue, and winter rape. Photosynthetica 38:409–413

    Article  Google Scholar 

  • Plazek A, Hura K, Rapacz H, Zur I (2001) The influence of ozone fumigation on metabolic efficiency and plant resistance to fungal pathogens. J Appl Bot 75:8–13

    CAS  Google Scholar 

  • Przybysz A, Popek R, Gawroska H, Katarzyna G, Karolina O, Wrochna M, Gawroski SW (2014) Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter. Acta Sci Pol Hortorum Cultus 13(1):17–30

    Google Scholar 

  • Pukacki PM (2000) Effects of sulphur, fluoride and heavy metals pollution on the chlorophyll fluorescence of Scots pine (Pinus sylvestris L.) needles. Dendrobiology 45:83–88

    CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmospheric 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai A, Kulshrestha K, Srivastava PK, Mohanty CS (2009) Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist 30:18–23

    Article  Google Scholar 

  • Rai A, Kulshrestha EK, Srivastava EPK, Mohanty (2010) Leaf surface structure alterations due to particulate pollution in some common plants. Environmentalist 30:18–23

    Article  Google Scholar 

  • Ramge P, Badeck FW, Plochl M, Kohlmaier GH (1993) Apoplastic antioxidants as decisive elimination factors within the uptake process of nitrogen dioxide into leaf tissues. New Phytol 125:771–785

    Article  CAS  Google Scholar 

  • Reddy AR, Rasineni GK, Raghavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99:46–57

    CAS  Google Scholar 

  • Reichenauer TG, Bolhàr-Nordenkampf HR (1999) Mechanisms of impairment of the photosynthetic apparatus in intact leaves by ozone. Verlag der Zeitschrift für Naturforschung, Tübingen

    Google Scholar 

  • Reichenauer T, Bolhar-Nordenkampf HR, Soja G (1997) Chronology of changes within the photosynthetic apparatus of Populus nigra under ozone stress. Phyton 37:245–250

    CAS  Google Scholar 

  • Robinson MF, Heath J, Mansfield TA (1998) Disturbances in stomatal behaviour caused by air pollutants. J Exp Bot 49:461–469

    Article  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of O3 on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584

    Article  CAS  PubMed  Google Scholar 

  • Sauer F, Schafer C, Neeb P, Horie O, Moortgat GK (1999) Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes under humid conditions. Atmos Environ 33:229–241

    Article  CAS  Google Scholar 

  • Schmidt W, Neubauer C, Kolbowski J, Schreiber U, Urbach W (1990) Comparison of effects of air pollutants (SO2, O3, NO2) on intact leaves by measurements of chlorophyll fluorescence and P700 absorbance changes. Photosynth Res 25(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Seyyednejad SM, Koochak H (2011) A study on air pollution-induced biochemical alterations in Eucalyptus camaldulensis Aus. J Basic Appl Sci 5(3):601–606

    CAS  Google Scholar 

  • Seyyednejad SM, Niknejad M, Yusefi M (2009a) Study of air pollution effects on some physiology and morphology factors of Albizia lebbeck in high temperature condition in Khuzestan. J Plant Sci 4:122–126

    Article  CAS  Google Scholar 

  • Seyyednejad SM, Niknejad M, Yusefi M (2009b) The effect of air pollution on some morphological and biochemical factors of Callistemon citrinus in petrochemical zone in South of Iran. Asian J Plant Sci 8:562–565

    Article  Google Scholar 

  • Seyyednejad SM, Niknejad M, Koochak H (2011) A review of some different effects of air pollution on plants. Res J Environ Sci 5:302–309

    Article  CAS  Google Scholar 

  • Seyyednejad SM, Koochak H, Vaezi J (2013) Some biochemical responses due to industrial air pollution in Prosopis juliflora plant. J Biol Today’s World 2:471–481

    Google Scholar 

  • Sharkey TD (1996) Isoprene synthesis by plants and animals. Endeavor 20:74–78

    Article  CAS  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125:2001–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shavin S, Maurer S, Matyssek R, Bilger W, Scheidegger C (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14:10–16

    Article  Google Scholar 

  • Shiragave PD, Ramteke AA, Patil SD (2015) Plant responses to vehicular pollution: specific effect on photosynthetic pigments of plants at divider of NH-4 highway. Cent Eur J Exp Biol 4(2):1–4

    Google Scholar 

  • Silva LC, Oliva MA, Azevedo AA, Araujo JM (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175(1–4):241–256

    Article  CAS  Google Scholar 

  • Srivastava HS (1999) Biochemical defence mechanisms of plants in response to increased levels of ozone and other atmospheric pollutants. Curr Sci 76:525–533

    CAS  Google Scholar 

  • Takemoto BK, Bytnerowicz A, Olszyk DM (1988) Depression of photosynthesis, growth, and yield in field-grown green pepper (Capsicum annuum L.) exposed to acidic fog and ambient ozone. Plant Physiol 88:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasing CS (2013) Role of protein phosphorylation in adaptive responses of the photosynthetic apparatus. Int J Res Sci Technol 2: 92–96

    Google Scholar 

  • Teughels H, Nijs I, Van Hecke P, Impens I (2005) Competition in a global change environment: the importance of different plant traits for competitive success. J Biogeogr 22:297–305

    Article  Google Scholar 

  • Thwe AA, Vercambre G, Gautier GHF, Phattaralerphong J, Kasemsap P (2014) Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (Solanum lycopersicum Mill.). Photosynthetica 52(1):105–116

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Marshall FM (2006) Evaluation of ambient air pollution impact on carrot plants at a sub urban site using open top chambers. Environ Monit Assess 119:15–30

    Article  CAS  PubMed  Google Scholar 

  • Tognini M, Ranieri A, Castagna A, Nali C, Lorenzini G, Soldatini GF (1997) Ozone-induced alterations in thylakoid protein patterns in pumpkin leaves of different age. Phyton 37(3):277–282

    CAS  Google Scholar 

  • Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi AK, Gautam M (2007) Biochemical parameters of plants as indicators of air pollution. J Environ Biol 28:127–132

    CAS  PubMed  Google Scholar 

  • Trumble JT, Walker GP (1991) Acute effects of acidic fog on photosynthetic activity and morphology of Phaseolus lunatus. Hortscience 26(12):1531–1534

    Google Scholar 

  • Tzvetkova N, Kolarov D (1996) Effect of air pollution on carbohydrate and nutrient concentrations in some deciduous tree species. Bulg J Plant Physiol 22:53–63

    Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • van Heerden PDR, Krüger GHJ, Kilbourn LM (2007) Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust. Environ Pollut 146:34–45

    Article  PubMed  CAS  Google Scholar 

  • Vardaka E, Cook CM, Lanaras T, Sgardelis SP, Pantis JD (1995) Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera, an evergreen schlerophyllous shrub. Bull Environ Contam Toxicol 54:414–419

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic S, Bilger W, Heber U (1993) Inhibition of photosynthesis, acidification and stimulation of zeaxanthin formation in leaves by sulfur dioxide and reversal of these effects. Planta 191(3):365–376

    Article  CAS  Google Scholar 

  • Veljoviû-jovanoviû S (1998) Active oxygen species and photosynthesis: mehler and ascorbate peroxidase reactions. Iugoslav Physiol Pharmacol Acta 34:503–522

    Google Scholar 

  • Vollenweider P, Ottiger M, Günthardt-Goerg MS (2003) Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environ Pollut 124:101–118

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Low M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59:130–138

    Article  CAS  Google Scholar 

  • Wolfenden J, Mansfield TA (1990) Physiological disturbances in plants caused by air pollutants. Proc R Soc Edinb 97B:117–138

    Google Scholar 

  • Woo SY, Lee DK, Lee YK (2007) Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. Photosynthetica 45(2):293–295

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2006) Health risks of particulate matter from long-range transboundary air pollution. Joint WHO/Convention Task Force on the Health Aspects of Air Pollution

    Google Scholar 

  • Yakushevska AE, Keegstra W, Horton P (2003) The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry 42:608–613

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Sun T, Chen H, Wang Z, Yang H, Guo X, Chen X (2015) Effects of hydrogen fluoride-stress on physiological characteristics of Theaceae tree seedlings. International conference on education, management and computing technology

    Google Scholar 

  • Yu L, Mai B, Meng X, Bi X, Sheng G, Fu J, Peng P (2006) Particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans in the atmosphere of Guangzhou. China Atmos Environ 40(1):96–108

    Article  CAS  Google Scholar 

  • Yun MH (2007) Effect of ozone on CO2 assimilation and PSII function in plants with contrasting pollutant sensitivities. Diss Abstr Int 68:10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Dhir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Dhir, B. (2016). Air Pollutants and Photosynthetic Efficiency of Plants. In: Kulshrestha, U., Saxena, P. (eds) Plant Responses to Air Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-10-1201-3_7

Download citation

Publish with us

Policies and ethics