Skip to main content

Paraganglioma

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery
  • 607 Accesses

Abstract

Paragangliomas are rare tumors that arise from the sympathetic ganglia of the chest and abdomen and the parasympathetic ganglia of the head and neck. They often are found incidentally on imaging that is performed for another reason, although they may also present with the classic symptoms of hypertension, anxiety, nausea and vomiting, or catecholamine crisis. Patients with suspicion of paraganglioma should undergo biochemical testing with plasma or urine metanephrines to confirm the diagnosis. Cross-sectional imaging with CT or MRI is necessary to localize the tumor and for surgical planning. If patients are at high risk for metastatic disease, functional imaging with 123I-MIBG, 18F-FDG, or 68Ga-DOTATATE may be performed to localize additional sites of disease. All patients with paraganglioma should be referred to a genetic counselor for consideration of genetic testing, since at least 30% of patients with paraganglioma may have a genetic mutation, most commonly in one of the SDH protein subtypes.

Preoperative alpha-blockade is essential before surgery. Open resection of paraganglioma is usually preferred, although a laparoscopic approach may be attempted if the surgeon is comfortable with the technique. Removal of the tumor without violating the capsule is essential to prevent local seeding and recurrence. After surgery, patients should be monitored yearly with metanephrine levels and cross-sectional imaging if biochemical testing shows evidence of recurrence. Surgical resection is the first line of therapy in patients with recurrence or metastases when possible and has the best outcomes. Local ablative therapy, chemotherapy, or ablation with radiolabeled peptides may be considered in patients with disease that is not amenable to resection. Patients with metastatic disease have a varying course but can often achieve good disease-free intervals and overall survival when treated by a multidisciplinary team experienced in treating this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99:1915–42.

    Article  CAS  Google Scholar 

  2. Hamidi O, Young WF Jr, Iniguez-Ariza NM, et al. Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J Clin Endocrinol Metab. 2017;102:3296–305.

    Article  Google Scholar 

  3. Alezais H, Peyron A. Un groupe nouveau de tumeurs epitheliliale: les paragangliomes. Compte Rend Soc Biol. 1908;65:745–7.

    Google Scholar 

  4. Else T. 15 YEARS OF PARAGANGLIOMA: pheochromocytoma, paraganglioma and genetic syndromes: a historical perspective. Endocr Relat Cancer. 2015;22:T147–59.

    Article  Google Scholar 

  5. Kiernan CM, Solorzano CC. Pheochromocytoma and paraganglioma: diagnosis, genetics, and treatment. Surg Oncol Clin N Am. 2016;25:119–38.

    Article  Google Scholar 

  6. Waguespack SG, Rich T, Grubbs E, et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2010;95:2023–37.

    Article  CAS  Google Scholar 

  7. Baguet JP, Hammer L, Mazzuco TL, et al. Circumstances of discovery of phaeochromocytoma: a retrospective study of 41 consecutive patients. Eur J Endocrinol. 2004;150:681–6.

    Article  CAS  Google Scholar 

  8. Kopetschke R, Slisko M, Kilisli A, et al. Frequent incidental discovery of phaeochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol. 2009;161:355–61.

    Article  CAS  Google Scholar 

  9. Neumann HP, Bausch B, McWhinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346:1459–66.

    Article  CAS  Google Scholar 

  10. Gimenez-Roqueplo AP, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res. 2012;44:328–33.

    Article  CAS  Google Scholar 

  11. Lenders JW, Eisenhofer G, Mannelli M, et al. Phaeochromocytoma. Lancet. 2005;366:665–75.

    Article  Google Scholar 

  12. Chen H, Sippel RS, O'Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.

    Article  Google Scholar 

  13. Eisenhofer G, Keiser H, Friberg P, et al. Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. J Clin Endocrinol Metab. 1998;83:2175–85.

    Article  CAS  Google Scholar 

  14. Manu P, Runge LA. Biochemical screening for pheochromocytoma. Superiority of urinary metanephrines measurements. Am J Epidemiol. 1984;120:788–90.

    Article  CAS  Google Scholar 

  15. Lenders JW, Keiser HR, Goldstein DS, et al. Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med. 1995;123:101–9.

    Article  CAS  Google Scholar 

  16. Eisenhofer G, Lenders JW, Linehan WM, et al. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med. 1999;340:1872–9.

    Article  CAS  Google Scholar 

  17. Lenders JW, Willemsen JJ, Eisenhofer G, et al. Is supine rest necessary before blood sampling for plasma metanephrines? Clin Chem. 2007;53:352–4.

    Article  CAS  Google Scholar 

  18. Raber W, Raffesberg W, Bischof M, et al. Diagnostic efficacy of unconjugated plasma metanephrines for the detection of pheochromocytoma. Arch Intern Med. 2000;160:2957–63.

    Article  CAS  Google Scholar 

  19. Eisenhofer G, Goldstein DS, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J Clin Endocrinol Metab. 2003;88:2656–66.

    Article  CAS  Google Scholar 

  20. Darr R, Lenders JW, Stange K, et al. Diagnosis of pheochromocytoma and paraganglioma: the clonidine suppression test in patients with borderline elevations of plasma free normetanephrine. Dtsch Med Wochenschr. 2013;138:76–81.

    Article  CAS  Google Scholar 

  21. Lumachi F, Tregnaghi A, Zucchetta P, et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun. 2006;27:583–7.

    Article  Google Scholar 

  22. Berglund AS, Hulthen UL, Manhem P, et al. Metaiodobenzylguanidine (MIBG) scintigraphy and computed tomography (CT) in clinical practice. Primary and secondary evaluation for localization of phaeochromocytomas. J Intern Med. 2001;249:247–51.

    Article  CAS  Google Scholar 

  23. Maurea S, Cuocolo A, Reynolds JC, et al. Iodine-131-metaiodobenzylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. J Nucl Med. 1993;34:173–9.

    CAS  PubMed  Google Scholar 

  24. Caoili EM, Korobkin M, Francis IR, et al. Adrenal masses: characterization with combined unenhanced and delayed enhanced CT. Radiology. 2002;222:629–33.

    Article  Google Scholar 

  25. Pacak K, Eisenhofer G, Carrasquillo JA, et al. Diagnostic localization of pheochromocytoma: the coming of age of positron emission tomography. Ann N Y Acad Sci. 2002;970:170–6.

    Article  CAS  Google Scholar 

  26. Baez JC, Jagannathan JP, Krajewski K, et al. Pheochromocytoma and paraganglioma: imaging characteristics. Cancer Imaging. 2012;12:153–62.

    PubMed  PubMed Central  Google Scholar 

  27. Bhatia KS, Ismail MM, Sahdev A, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf). 2008;69:181–8.

    Article  Google Scholar 

  28. Wiseman GA, Pacak K, O'Dorisio MS, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50:1448–54.

    Article  CAS  Google Scholar 

  29. Fiebrich HB, Brouwers AH, Kerstens MN, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab. 2009;94:3922–30.

    Article  CAS  Google Scholar 

  30. Milardovic R, Corssmit EP, Stokkel M. Value of 123I-MIBG Scintigraphy in Paraganglioma. Neuroendocrinology. 2010;91:94–100.

    Article  CAS  Google Scholar 

  31. van der Horst-Schrivers AN, Kerstens MN, Wolffenbuttel BH. Preoperative pharmacological management of phaeochromocytoma. Neth J Med. 2006;64:290–5.

    PubMed  Google Scholar 

  32. Furuta N, Kiyota H, Yoshigoe F, et al. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol. 1999;6:119–24.

    Article  CAS  Google Scholar 

  33. Mozley PD, Kim CK, Mohsin J, et al. The efficacy of iodine-123-MIBG as a screening test for pheochromocytoma. J Nucl Med. 1994;35:1138–44.

    CAS  PubMed  Google Scholar 

  34. Timmers HJ, Chen CC, Carrasquillo JA, et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst. 2012;104:700–8.

    Article  CAS  Google Scholar 

  35. Timmers HJ, Kozupa A, Chen CC, et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol. 2007;25:2262–9.

    Article  Google Scholar 

  36. Tan TH, Hussein Z, Saad FF, et al. Diagnostic performance of (68)Ga-DOTATATE PET/CT, (18)F-FDG PET/CT and (131)I-MIBG scintigraphy in mapping metastatic pheochromocytoma and paraganglioma. Nucl Med Mol Imaging. 2015;49:143–51.

    Article  CAS  Google Scholar 

  37. Janssen I, Blanchet EM, Adams K, et al. Superiority of [68Ga]-DOTATATE PET/CT to other functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2015;21:3888–95.

    Article  CAS  Google Scholar 

  38. Benn DE, Robinson BG. Genetic basis of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab. 2006;20:435–50.

    Article  CAS  Google Scholar 

  39. Fishbein L, Merrill S, Fraker DL, et al. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol. 2013;20:1444–50.

    Article  Google Scholar 

  40. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–21.

    CAS  PubMed  Google Scholar 

  41. Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab. 2007;92:4069–79.

    Article  CAS  Google Scholar 

  42. Brito JP, Asi N, Bancos I, et al. Testing for germline mutations in sporadic pheochromocytoma/paraganglioma: a systematic review. Clin Endocrinol (Oxf). 2015;82:338–45.

    Article  CAS  Google Scholar 

  43. Babic B, Patel D, Aufforth R, et al. Pediatric patients with pheochromocytoma and paraganglioma should have routine preoperative genetic testing for common susceptibility genes in addition to imaging to detect extra-adrenal and metastatic tumors. Surgery. 2017;161:220–7.

    Article  Google Scholar 

  44. Erlic Z, Rybicki L, Peczkowska M, et al. Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clin Cancer Res. 2009;15:6378–85.

    Article  CAS  Google Scholar 

  45. Rednam SP, Erez A, Druker H, et al. Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23:e68–75.

    Article  CAS  Google Scholar 

  46. Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med. 2009;266:43–52.

    Article  CAS  Google Scholar 

  47. Benn DE, Robinson BG, Clifton-Bligh RJ. 15 YEARS OF PARAGANGLIOMA: clinical manifestations of paraganglioma syndromes types 1-5. Endocr Relat Cancer. 2015;22:T91–103.

    Article  CAS  Google Scholar 

  48. Baysal BE, Willett-Brozick JE, Lawrence EC, et al. Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. J Med Genet. 2002;39:178–83.

    Article  CAS  Google Scholar 

  49. Ricketts CJ, Forman JR, Rattenberry E, et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat. 2010;31:41–51.

    Article  CAS  Google Scholar 

  50. Taschner PE, Jansen JC, Baysal BE, et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer. 2001;31:274–81.

    Article  CAS  Google Scholar 

  51. Neumann HP, Erlic Z. Maternal transmission of symptomatic disease with SDHD mutation: fact or fiction? J Clin Endocrinol Metab. 2008;93:1573–5.

    Article  CAS  Google Scholar 

  52. Neumann HP, Pawlu C, Peczkowska M, et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA. 2004;292:943–51.

    Article  CAS  Google Scholar 

  53. van Baars F, Cremers C, van den Broek P, et al. Genetic aspects of nonchromaffin paraganglioma. Hum Genet. 1982;60:305–9.

    Article  Google Scholar 

  54. Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325:1139–42.

    Article  CAS  Google Scholar 

  55. Schiavi F, Boedeker CC, Bausch B, et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA. 2005;294:2057–63.

    Article  CAS  Google Scholar 

  56. Eijkelenkamp K, Osinga TE, de Jong MM, et al. Calculating the optimal surveillance for head and neck paraganglioma in SDHB-mutation carriers. Fam Cancer. 2017;16:123–30.

    Article  CAS  Google Scholar 

  57. Jafri M, Whitworth J, Rattenberry E, et al. Evaluation of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. Clin Endocrinol (Oxf). 2013;78:898–906.

    Article  CAS  Google Scholar 

  58. Brouwers FM, Eisenhofer G, Tao JJ, et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. 2006;91:4505–9.

    Article  CAS  Google Scholar 

  59. Boikos SA, Pappo AS, Killian JK, et al. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2:922–8.

    Article  Google Scholar 

  60. Korpershoek E, Favier J, Gaal J, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96:E1472–6.

    Article  CAS  Google Scholar 

  61. Chrisoulidou A, Kaltsas G, Ilias I, et al. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2007;14:569–85.

    Article  CAS  Google Scholar 

  62. Strajina V, Dy BM, Farley DR, et al. Surgical treatment of malignant pheochromocytoma and paraganglioma: retrospective case series. Ann Surg Oncol. 2017;24:1546–50.

    Article  Google Scholar 

  63. Roman-Gonzalez A, Zhou S, Ayala-Ramirez M, et al. Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann Surg. 2018;268(1):172–178

    Google Scholar 

  64. Bomanji J, Britton KE, Ur E, et al. Treatment of malignant phaeochromocytoma, paraganglioma and carcinoid tumours with 131I-metaiodobenzylguanidine. Nucl Med Commun. 1993;14:856–61.

    Article  CAS  Google Scholar 

  65. Loh KC, Fitzgerald PA, Matthay KK, et al. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Invest. 1997;20:648–58.

    Article  CAS  Google Scholar 

  66. Kong G, Grozinsky-Glasberg S, Hofman MS, et al. Efficacy of peptide receptor radionuclide therapy for functional metastatic paraganglioma and pheochromocytoma. J Clin Endocrinol Metab. 2017;102:3278–87.

    Article  Google Scholar 

  67. Averbuch SD, Steakley CS, Young RC, et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann Intern Med. 1988;109:267–73.

    Article  CAS  Google Scholar 

  68. Teno S, Tanabe A, Nomura K, et al. Acutely exacerbated hypertension and increased inflammatory signs due to radiation treatment for metastatic pheochromocytoma. Endocr J. 1996;43:511–6.

    Article  CAS  Google Scholar 

  69. Kebebew E, Duh QY. Benign and malignant pheochromocytoma: diagnosis, treatment, and follow-up. Surg Oncol Clin N Am. 1998;7:765–89.

    Article  CAS  Google Scholar 

  70. Eisenhofer G, Bornstein SR, Brouwers FM, et al. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer. 2004;11:423–36.

    Article  CAS  Google Scholar 

  71. Parenti G, Zampetti B, Rapizzi E, et al. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol. 2012;2012:872713.

    Article  Google Scholar 

  72. Amar L, Servais A, Gimenez-Roqueplo AP, et al. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab. 2005;90:2110–6.

    Article  CAS  Google Scholar 

  73. Choi YM, Sung TY, Kim WG, et al. Clinical course and prognostic factors in patients with malignant pheochromocytoma and paraganglioma: a single institution experience. J Surg Oncol. 2015;112:815–21.

    Article  Google Scholar 

  74. Patel D, Mehta A, Nilubol N, et al. Total 18F-FDG PET/CT metabolic tumor volume is associated with postoperative biochemical response in patients with metastatic pheochromocytomas and paragangliomas. Ann Surg. 2016;263:582–7.

    Article  Google Scholar 

  75. Chen Y, Hodin RA, Pandolfi C, et al. Hypoglycemia after resection of pheochromocytoma. Surgery. 2014;156:1404–8; discussion 1408–1409.

    Article  Google Scholar 

  76. Scholten A, Cisco RM, Vriens MR, et al. Pheochromocytoma crisis is not a surgical emergency. J Clin Endocrinol Metab. 2013;98:581–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Yang Duh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beninato, T., Duh, QY. (2018). Paraganglioma. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics