Skip to main content

Radioiodine Therapy for Well-Differentiated Thyroid Cancer

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery
  • 603 Accesses

Abstract

Better understanding and more clinical evidence over the last two decades have accumulated for the use of radioiodine in the management algorithm of well-differentiated thyroid cancer, although several questions still remain. This body of evidence has led to evolving clinical indications, dose activities and clinical practice for radioiodine in the management of well-differentiated thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawka AM, et al. A systematic review and mataanalysis of the effectiveness of radioactive iodine renmant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.

    Article  CAS  Google Scholar 

  2. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  Google Scholar 

  3. DeGroot LJ, et al. Natural history, treatment and course of papillary thyroid cancer. J Clin Endocrinol Metab. 1990;71:414–24.

    Article  CAS  Google Scholar 

  4. Jonklaas J, et al. Outcomes of patients with differentiated thyroid carcinoma after initial therapy. Thyroid. 2006;16:1229–42.

    Article  Google Scholar 

  5. Tuttle RM, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variable to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20:1341–9.

    Article  CAS  Google Scholar 

  6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  Google Scholar 

  7. Mallick U, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–85.

    Article  CAS  Google Scholar 

  8. Schlumberger M, et al. Strategies in radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.

    Article  CAS  Google Scholar 

  9. Bal C, et al. Prospective Randomized Clinical Trial to evaluate the optimal dose of 131I for remnant ablation in patients with differentiated thyroid carcinoma. Cancer. 1996;77:2574–80.

    Article  CAS  Google Scholar 

  10. Verburg FA, et al. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both high- and low-risk patients. J Clin Endocrinol Metab. 2014;99:4487–96.

    Article  CAS  Google Scholar 

  11. Kruijff S, et al. Decreasing the dose of radioiodine for remant ablation does not increase structural recurrence rates in papillary thyroid carcinoma. Surgery. 2013;154:1337–44.

    Article  Google Scholar 

  12. Castagna MG, et al. Post-surgical thyroid ablation with low or high radioiodine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur J Endocrinol. 2013;169:23–9.

    Article  CAS  Google Scholar 

  13. Sabra MM, et al. Higher administered activities of radioactive iodine are associated with less structural persistent response in older but not younger papillary thyroid cancer patients with lateral neck lymph node metastases. Thyroid. 2014;24:1088–95.

    Article  CAS  Google Scholar 

  14. Han JM, et al. Effects of low-dose and high-dose postoperative radioiodine therapy on the clinical outcome in patients with small differentiated thyroid cancer having microscopic extrathyroidal extension. Thyroid. 2014;24(5):820.

    Article  CAS  Google Scholar 

  15. Luster M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imag. 2008;3:1941–59.

    Article  Google Scholar 

  16. Edmonds CJ, Hayes S, Kermode JC, Thompson BD. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br J Radiol. 1977;50:799–807.

    Article  CAS  Google Scholar 

  17. Lee J, Yun MJ, Nam KH, Chung WY, Soh EY, Park CS. Quality of life and effectiveness comparisons of thyroxine withdrawal, triiodothyronine withdrawal, and recombinant thyroid-stimulating hormone administration for low-dose radioiodine remnant ablation of differentiated thyroid carcinoma. Thyroid. 2010;20:173–9.

    Article  Google Scholar 

  18. Chianelli M, Todino V, Graziano FM, Panunzi C, Pace D, Guglielmi R, Signore A, Papini E. Low-activity (2.0 GBq; 54 mCi) radioiodine post-surgical remnant ablation in thyroid cancer: comparison between hormone withdrawal and use of rhTSH in low-risk patients. Eur J Endocrinol. 2009;160:431–6.

    Article  CAS  Google Scholar 

  19. Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, Sherman S, Haugen B, Corone C, Molinaro E, Elisei R, Ceccarelli C, Pinchera A, Wahl RL, Leboulleux S, Ricard M, Yoo J, Busaidy NL, Delpassand E, Hanscheid H, Felbinger R, Lassmann M, Reiners C. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    Article  CAS  Google Scholar 

  20. Taieb D, Sebag F, Cherenko M, Baumstarck-Barrau K, Fortanier C, Farman-Ara B, de Micco C, Vaillant J, Thomas S, Conte-Devolx B, Loundou A, Auquier P, Henry JF, Mundler O. Quality of life changes and clinical outcomes in thyroid cancer patients undergoing radioiodine remnant ablation (RRA) with recombinant human TSH (rhTSH): a randomized controlled study. Clin Endocrinol (Oxf). 2009;71:115–23.

    Article  CAS  Google Scholar 

  21. Emmanouilidis N, Muller JA, Jager MD, Kaaden S, Helfritz FA, Guner Z, Kespohl H, Knitsch W, Knapp WH, Klempnauer J, Scheumann GF. Surgery and radioablation therapy combined: introducing a 1-weekcondensed procedure bonding total thyroidectomy and radioablation therapy with recombinant human TSH. Eur J Endocrinol. 2009;161:763–9.

    Article  CAS  Google Scholar 

  22. Tu J, Wang S, Huo Z, Lin Y, Li X, Wang S. Recombinant human thyrotropin-aided versus thyroid hormone withdrawal-aided radioiodine treatment for differentiated thyroid cancer after total thyroidectomy: a meta-analysis. Radiother Oncol. 2014;110:25–30.

    Article  CAS  Google Scholar 

  23. Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, Kim EE, Lee DS, Chung JK. The effectiveness of recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal prior to radioiodine remnant ablation in thyroid cancer: a meta-analysis of randomized controlled trials. J Korean Med Sci. 2014;29:811–7.

    Article  CAS  Google Scholar 

  24. Lippi F, Capezzone M, Angelini F, Taddei D, Molinaro E, Pinchera A, Pacini F. Radioiodine treatment of metastatic differentiated thyroid cancer in patients on Lthyroxine, using recombinant human TSH. Eur J Endocrinol. 2001;144:5–11.

    Article  CAS  Google Scholar 

  25. Vargas GE, Uy H, Bazan C, Guise TA, Bruder JM. Hemiplegia after thyrotropin alfa in a hypothyroid patient with thyroid carcinoma metastatic to the brain. J Clin Endocrinol Metab. 1999;84:3867–71.

    Article  CAS  Google Scholar 

  26. Robbins RJ, Voelker E, Wang W, Macapinlac HA, Larson SM. Compassionate use of recombinant human thyrotropin to facilitate radioiodine therapy: case report and review of literature. Endocr Pract. 2000;6:460–4.

    Article  CAS  Google Scholar 

  27. Braga M, Ringel MD, Cooper DS. Sudden enlargement of local recurrent thyroid tumor after recombinant human TSH administration. J Clin Endocrinol Metab. 2001;86:5148–51.

    Article  CAS  Google Scholar 

  28. Luster M, Lassmann M, Haenscheid H, Michalowski U, Incerti C, Reiners C. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2000;85:3640–5.

    Article  CAS  Google Scholar 

  29. Silberstein EB, Alavi A, Balon HR, Clarke SE, Divgi C, Gelfand MJ, Goldsmith SJ, Jadvar H, Marcus CS, Martin WH, Parker JA, Royal HD, Sarkar SD, Stabin M, Waxman AD. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012;53:1633–51.

    Article  Google Scholar 

  30. Sawka AM, Ibrahim-Zada I, Galacgac P, Tsang RW, Brierley JD, Ezzat S, Goldstein DP. Dietary iodine restriction in preparation for radioactive iodine treatment or scanning in well-differentiated thyroid cancer: a systematic review. Thyroid. 2010;20:1129–38.

    Article  CAS  Google Scholar 

  31. Berg G, et al. Consequences of inadvertent radioiodine treatment of Graves’ disease and thyroid cancer in undiagnosed pregnancy. Can we rely on routine pregnancy testing? Acta Oncol. 2008;47:145–9.

    Article  CAS  Google Scholar 

  32. Schlumberger M, et al. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med. 1996;37:606–12.

    CAS  PubMed  Google Scholar 

  33. Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocrinol Metab. 2013;98:1163–71.

    Article  CAS  Google Scholar 

  34. Sherman SI, Tielens ET, Sostre S, Wharam MD Jr, Ladenson PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:629–34.

    CAS  PubMed  Google Scholar 

  35. Fatourechi V, Hay ID, Mullan BP, Wiseman GA, Eghbali-Fatourechi GZ, Thorson LM, Gorman CA. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    Article  CAS  Google Scholar 

  36. Souza Rosario PW, Barroso AL, Rezende LL, Padrao EL, Fagundes TA, Penna GC, Purisch S. Post I-131 therapy scanning in patients with thyroid carcinoma metastases: an unnecessary cost or a relevant contribution? Clin Nucl Med. 2004;29:795–8.

    Article  Google Scholar 

  37. Kohlfuerst S, Igerc I, Lobnig M, Gallowitsch HJ, Gomez-Segovia I, Matschnig S, Mayr J, Mikosch P, Beheshti M, Lind P. Posttherapeutic (131)I SPECTCT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886–93.

    Article  CAS  Google Scholar 

  38. Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, Zhu R. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49:1952–7.

    Article  Google Scholar 

  39. Freudenberg L, Jentzen W, Goerges R, Petrich T, Marlowe RJ, Knust J, Bockisch A. 124 I-PET dosimetry in advanced differentiated thyroid cancer. Therapeutic impact. Nuklearmedizin. 2007;46:121–8.

    CAS  PubMed  Google Scholar 

  40. Pentlow KS, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37:1557–62.

    CAS  PubMed  Google Scholar 

  41. Sgouros G, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

  42. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.

    Article  CAS  Google Scholar 

  43. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, Dondon MG, Abbas MT, Langlois C, Schlumberger M. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.

    Article  CAS  Google Scholar 

  44. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII, Phase 2. Chapter 12. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  45. Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117:4439–46.

    Article  Google Scholar 

  46. Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, Klingmuller D. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27:503–7.

    Article  CAS  Google Scholar 

  47. Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;56:755–8.

    Article  CAS  Google Scholar 

  48. Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–25.

    Article  CAS  Google Scholar 

  49. Sarkar SD, Beierwaltes WH, Gill SP, Cowley BJ. Subsequent fertility and birth histories of children and adolescents treated with 131I for thyroid cancer. J Nucl Med. 1976;17:460–4.

    CAS  PubMed  Google Scholar 

  50. Ceccarelli C, et al. 131I therapy for differentiated thyroid cancer leads to an earlier onset of menopause: results of a retrospective study. J Clin Endocrinol Metab. 2001;86:3512–5.

    Article  CAS  Google Scholar 

  51. Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78:92–3.

    Article  CAS  Google Scholar 

  52. Dottorini ME, Lomuscio G, Mazzucchelli L, Vignati A, Colombo L. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J Nucl Med. 1995;36:21–7.

    CAS  PubMed  Google Scholar 

  53. Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, Brierley JD, Straus S, Thabane L, Gafni A, Ezzat S, George SR, Goldstein DP. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69:479–90.

    Article  Google Scholar 

  54. Walter MA, Turtschi CP, Schindler C, Minnig P, MullerBrand J, Muller B. The dental safety profile of highdose radioiodine therapy for thyroid cancer: long-term results of a longitudinal cohort study. J Nucl Med. 2007;48:1620–5.

    Article  Google Scholar 

  55. Nakada K, Ishibashi T, Takei T, Hirata K, Shinohara K, Katoh S, Zhao S, Tamaki N, Noguchi Y, Noguchi S. Does lemon candy decrease salivary gland damage after radioiodine therapy for thyroid cancer? J Nucl Med. 2005;46:261–6.

    PubMed  Google Scholar 

  56. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13:265–71.

    Article  CAS  Google Scholar 

  57. Bomeli SR, Schaitkin B, Carrau RL, Walvekar RR. Interventional sialendoscopy for treatment of radioiodine induced sialadenitis. Laryngoscope. 2009;119:864–7.

    Article  Google Scholar 

  58. Prendes BL, Orloff LA, Eisele DW. Therapeutic sialendoscopy for the management of radioiodine sialadenitis. Arch Otolaryngol Head Neck Surg. 2012;138:15–9.

    Article  Google Scholar 

  59. Bhayani MK, Acharya V, Kongkiatkamon S, Farah S, Roberts DB, Sterba J, Chambers MS, Lai SY. Sialendoscopy for patients with radioiodine-induced sialadenitis and xerostomia. Thyroid. 2015;25:834–8.

    Article  CAS  Google Scholar 

  60. Kloos RT, Duvuuri V, Jhiang SM, Cahill KV, Foster JA, Burns JA. Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab. 2002;87:5817–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chee-Eng Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thang, S.P., Ng, D.CE. (2018). Radioiodine Therapy for Well-Differentiated Thyroid Cancer. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics