Skip to main content

Crowd-Z

  • Chapter
  • First Online:
Discrete Optimization in Architecture

Part of the book series: SpringerBriefs in Architectural Design and Technology ((BRIEFSARCHIDE))

  • 676 Accesses

Abstract

This chapter presents Crowd-Z (CZ): a user-friendly framework for crowd simulations (CS) in any floor-plans. The crowd dynamics component of CZ is a straightforward agent-based model. Such CSs can be carried out at every stage of architectural or urban design process: from early sketches to the final blue-prints. Most importantly, CZ accepts the initial input in practically any form, e.g.: pre-processed drawings produced by Computer-Aided Design (CAD) software, digital images, free-hand drawings, etc. Selected methods of acquisition of the CS environment are demonstrated and illustrative with practical examples. Finally CZ is evaluated against commercially available software and with some “classic” CS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandini S, Vizzari G (2007) Regulation function of the environment in agent-based simulation. In: Environments for multi-agent systems III, Springer, pp 157–169

    Google Scholar 

  2. Blue V, Adler J (1999) Cellular automata microsimulation of bidirectional pedestrian flows. Transp Res Rec J Transp Res Board 1678:135–141

    Article  Google Scholar 

  3. Blue VJ, Adler JL (2002) Flow capacities from cellular automata modeling of proportional splits of pedestrians by direction. In: Pedestrian and evacuation dynamics, pp 115–122

    Google Scholar 

  4. Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295(3):507–525

    Article  MATH  Google Scholar 

  5. Chavey D (1989) Tilings by regular polygons II: A catalog of tilings. Comput Math Appl 17(1–3):147–165

    Article  MathSciNet  MATH  Google Scholar 

  6. Chraibi M, Wagoum AUK, Schadschneider A, Seyfried A (2011) Force-based models of pedestrian dynamics. NHM 6(3):425–442

    Article  MathSciNet  MATH  Google Scholar 

  7. Gipps PG (1987) Simulation of pedestrian traffic in buildings. Technical report

    Google Scholar 

  8. Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282

    Article  Google Scholar 

  9. Hirai K, Tarui K (1977) A simulation of the behavior of a crowd in panic. Syst Control, Japan

    Google Scholar 

  10. Kepler J (1938) Harmonice mundi (linz, 1619). English edition: Harmonies of the world, Book 5

    Google Scholar 

  11. Kerridge J, Hine J, Wigan M (2001) Agent-based modelling of pedestrian movements: the questions that need to be asked and answered. Environ Plann 28(3):327–342

    Article  Google Scholar 

  12. Kirchner A, Schadschneider A (2002) Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312(1):260–276

    Article  MATH  Google Scholar 

  13. Klüpfel H, Meyer-König T, Schreckenberg M (2003) Comparison of an evacuation exercise in a primary school to simulation results. In: Traffic and Granular Flow?01, Springer, pp 549–554

    Google Scholar 

  14. Kretz T (2009) Pedestrian traffic: on the quickest path. J Stat Mech Theory Exp 2009(03):P03012

    Google Scholar 

  15. Kretz T, Schreckenberg M (2006) The fast-model. In: Cellular Automata, Springer, pp 712–715

    Google Scholar 

  16. Kretz T, Grünebohm A, Schreckenberg M (2006) Experimental study of pedestrian flow through a bottleneck. J Stat Mech: Theory Exp 2006(10):P10014

    Google Scholar 

  17. Kretz T, Hengst S, Vortisch P (2008) Pedestrian flow at bottlenecks-validation and calibration of vissim’s social force model of pedestrian traffic and its empirical foundations. arXiv:08051788

  18. Kretz T, Bönisch C, Vortisch P (2010) Comparison of various methods for the calculation of the distance potential field. In: Pedestrian and evacuation dynamics 2008, Springer, pp 335–346

    Google Scholar 

  19. Kretz T, Große A, Hengst S, Kautzsch L, Pohlmann A, Vortisch P (2011) Quickest paths in simulations of pedestrians. Adv Complex Syst 14(05):733–759

    Google Scholar 

  20. Liddle J, Seyfried A, Klingsch W, Rupprecht T, Schadschneider A, Winkens A (2009) An experimental study of pedestrian congestions: influence of bottleneck width and length. arXiv:09114350

  21. Löhner R (2010) On the modeling of pedestrian motion. Appl Math Model 34(2):366–382

    Article  MathSciNet  MATH  Google Scholar 

  22. Rajewsky N, Santen L, Schadschneider A, Schreckenberg M (1998) The asymmetric exclusion process: Comparison of update procedures. J Stat Phys 92(1–2):151–194

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogsch C, Schadschneider A, Seyfried A (2009) Simulation of human movement by cellular automata models using different update schemes. In: Proceedings of the 4th International Symposium on Human Behaviour in Fire 2009, 13–15 July 2009, Interscience Communication Ltd, London, 2009. ISBN: 978-0-9556548-3-1. -S. 543–548. http://juser.fz-juelich.de/record/6763, record converted from VDB: 12.11.2012

  24. Schadschneider A, Klingsch W, Klüpfel H, Kretz T, Rogsch C, Seyfried A (2009) Evacuation dynamics: empirical results, modeling and applications. In: Encyclopedia of complexity and systems science. Springer, pp 3142–3176

    Google Scholar 

  25. Schneider V, Könnecke R (2001) Simulating evacuation processes with aseri. In: Schreckenberg M, Sharma, SD (eds) Pedestrian and Evacuation Dynamics, pp 301–313

    Google Scholar 

  26. Schultze-Naumburg P (1909) Kulturarbeiten. band iv: Städtebau. 2. Auflage München

    Google Scholar 

  27. Seyfried A, Passon O, Steffen B, Boltes M, Rupprecht T, Klingsch W (2009) New insights into pedestrian flow through bottlenecks. Transp Sci 43(3):395–406

    Article  Google Scholar 

  28. Shi J, Ren A, Chen C (2009) Agent-based evacuation model of large public buildings under fire conditions. Automat Constr 18(3):338–347

    Article  Google Scholar 

  29. Weidmann U, Weidmann U, Weidmann U, Weidmann U (1993) Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). ETH, IVT

    MATH  Google Scholar 

  30. Willard S (2004) General topology. Courier Corporation

    Google Scholar 

  31. Yu W, Chen R, Dong L, Dai S (2005) Centrifugal force model for pedestrian dynamics. Phys Rev E 72(2):026112

    Google Scholar 

  32. Zawidzki M (2014) Interactive demonstrations of Crowd-Z. http://zawidzki.com/Crowd-Z/, an interactive demonstration

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machi Zawidzki .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Zawidzki, M. (2016). Crowd-Z. In: Discrete Optimization in Architecture. SpringerBriefs in Architectural Design and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1106-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1106-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1105-4

  • Online ISBN: 978-981-10-1106-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics