Skip to main content

Functional Genomics-Renal Development and Disease

  • Chapter
  • First Online:
Pediatric Biomedical Informatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 10))

  • 749 Accesses

Abstract

Developmental biologists are interested in the question of how a fertilized egg, equipped with only about 22,000 genes in its nucleus, is able to transform into a complete human being. In this chapter we discuss the functional genomics analysis of mammalian kidney development, using the kidney as a model system to better understand the basic principles of organogenesis. The formation of an organ requires a complex orchestration of gene expression in many different cell types at multiple developmental stages. The driving gene expression patterns can be captured in a variety of ways. Laser capture microdissection (LCM) can be used to isolate developmental compartments of the kidney, such as the forming glomerulus, for gene expression profiling. Transgenic lines of mice can be used to fluorescently label specific cell types that can then be purified by fluorescent activated cell sorting (FACS). And more recent very high resolution technologies allow high throughput RNA-seq of single cells of a developing organ. These methodologies produce immense datasets that require powerful informatics tools for their analysis. The purpose of this chapter is to illustrate how these various tools can be used to address important questions in developmental biology that are highly relevant to child health, and development of the kidney. The huge amounts of data generated need to be captured and annotated in a systematic way, stored, integrated and analyzed. The goal is to identify basic principles as well as precise pathways that drive organogenesis. The results will provide a better understanding of developmental disorders, and guide efforts to recapitulate organogenesis in vitro, for example in the generation of replacement organs from induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brunskill EW, Potter SS. RNA-Seq defines novel genes, RNA processing patterns and enhancer maps for the early stages of nephrogenesis: Hox supergenes. Dev Biol. 2012;368:4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Potter SS. Pathogenic pathways are activated in each major cell type of the glomerulus in the Cd2ap mutant mouse model of focal segmental glomerulosclerosis. BMC Nephrol. 2015;16:71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, et al. Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell. 2008;15:781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS. Single cell dissection of early kidney development: multilineage priming. Development. 2014;141:3093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell. 2005;9:283–92.

    Article  CAS  PubMed  Google Scholar 

  • Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM. Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics. 2005;23:159–71.

    Article  CAS  PubMed  Google Scholar 

  • Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature. 2008;453:544–7.

    Article  CAS  PubMed  Google Scholar 

  • Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell. 2003;4:383–93.

    Article  CAS  PubMed  Google Scholar 

  • Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene. Curr Biol. 2006;16:1018–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods. 2008;5:613–9.

    Article  CAS  PubMed  Google Scholar 

  • Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18:698–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8:e1000384.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297:1183–6.

    Article  CAS  PubMed  Google Scholar 

  • Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory L, Lonie L, Chew A, Wei CL, et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 2010;32:317–28.

    Article  CAS  PubMed  Google Scholar 

  • Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria. Cell. 2005;123:1025–36.

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol. 2015;11:e1004575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993;12:1059–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson T, Broll I, Frenz T, Hemmers S, Becher B, Zeilhofer HU, Buch T. Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis. 2010;48:264–80.

    Article  CAS  PubMed  Google Scholar 

  • Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    Article  PubMed  Google Scholar 

  • Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko MS, Nakauchi H, Takahashi N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 1990;9:2835–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowik MM, Groenen PJ, Pronk I, Lilien MR, Goldschmeding R, Dijkman HB, Levtchenko EN, Monnens LA, van den Heuvel LP. Focal segmental glomerulosclerosis in a patient homozygous for a CD2AP mutation. Kidney Int. 2007;72:1198–203.

    Article  CAS  PubMed  Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkola HK, Orkin SH. Gene targeting and transgenic strategies for the analysis of hematopoietic development in the mouse. Methods Mol Med. 2005;105:3–22.

    CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320:1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novick A, Weiner M. Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A. 1957;43:553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet. 2004;36:1065–71.

    Article  CAS  PubMed  Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the expression of a single gene. Nat Genet. 2002;31:69–73.

    Article  CAS  PubMed  Google Scholar 

  • Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods. 2008;5:877–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross IL, Browne CM, Hume DA. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol Cell Biol. 1994;72:177–85.

    Article  CAS  PubMed  Google Scholar 

  • Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC, Vranizan K, Spindler MJ, Pico AR, Cline MS, et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci U S A. 2010;107:10514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, et al. Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol. 2005;16:1993–2002.

    Article  CAS  PubMed  Google Scholar 

  • Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS. A catalogue of gene expression in the developing kidney. Kidney Int. 2003;64:1588–604.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest. 2001;108:1621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25:5214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih NY, Li J, Cotran R, Mundel P, Miner JH, Shaw AS. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am J Pathol. 2001;159:2303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart RO, Bush KT, Nigam SK. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A. 2001;98:5649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasuka N, White MR, Wood CD, Robertson WR, Davis JR. Dynamic changes in prolactin promoter activation in individual living lactotrophic cells. Endocrinology. 1998;139:1361–8.

    Article  CAS  PubMed  Google Scholar 

  • Temin HM, Baltimore D. RNA-directed DNA synthesis and RNA tumor viruses. Adv Virus Res. 1972;17:129–86.

    Article  CAS  PubMed  Google Scholar 

  • Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. Single-cell transcriptional analysis of neuronal progenitors. Neuron. 2003;38:161–75.

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi A, Yoshihara S, Yamazaki N, Kasai H, Asai-Tsuboi H, Komatsu M, Serizawa S, Ishii T, Matsuda Y, Nagawa F, et al. Olfactory neurons expressing closely linked and homologous odorant receptor genes tend to project their axons to neighboring glomeruli on the olfactory bulb. J Neurosci. 1999;19:8409–18.

    CAS  PubMed  Google Scholar 

  • Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990;87:1663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassar R, Ngai J, Axel R. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell. 1993;74:309–18.

    Article  CAS  PubMed  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol. 1993;122:283–93.

    Article  CAS  PubMed  Google Scholar 

  • Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature. 2006;440:174–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Steven Potter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Potter, S.S. (2016). Functional Genomics-Renal Development and Disease. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-1104-7_20

Download citation

Publish with us

Policies and ethics