Skip to main content

Network Analysis and Applications in Pediatric Research

  • Chapter
  • First Online:
Pediatric Biomedical Informatics

Part of the book series: Translational Bioinformatics ((TRBIO,volume 10))

  • 766 Accesses

Abstract

Networks, where nodes denote entities and links denote associations, provide a unified representation for a variety of complex systems, from social relationships to molecular interactions. In an era of big data, network analysis has been proved useful in biological applications such as predicting functions of proteins, guiding the design of wet-lab experiments, and discovering biomarkers of diseases. Driven by the availability of large-scale data sets and rapid development of bioinformatics’ tools, the research community has applied network analysis to define underlying causes of pediatric diseases. This will almost certainly lead to more effective strategies for prevention and treatment of diseases. In this chapter, we will introduce classic and the state-of-the-art network analysis methodologies, approaches and their applications. We then provide four examples of recent research, where network analysis is being applied in pediatrics. These include the identification of high-density lipoprotein particles that underlie the development of cardiovascular disease using protein-protein interaction networks, alternative splicing analysis by splicing interaction network, construction and network analysis of pediatric brain functional atlas, and disease relationship exploration using diagnosis association networks constructed by electronic health record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000;406:378–82.

    Article  CAS  PubMed  Google Scholar 

  • Arnold LD, Bachmann GA, Kelly S, Rosen R, Rhoads GG. Vulvodynia: characteristics and associations with co-morbidities and quality of life. Obstetrics and Gynecology. 2006;107:617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold LD, Bachmann GA, Rosen R, Rhoads GG. Assessment of vulvodynia symptoms in a sample of US women: a prevalence survey with a nested case control study. Am J Obstet Gynecol. 2007;196: 28. e1-28. e6.

    Google Scholar 

  • Association, American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub, 2013.

    Google Scholar 

  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  CAS  PubMed  Google Scholar 

  • Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95:764–72.

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In International AAAI conference on Weblogs and Social Media. 2009.

    Google Scholar 

  • Batagelj V, Mrvar A. Pajek – analysis and visualization of large networks. Graph Drawing Software. 2004:77–103.

    Google Scholar 

  • Berardini TZ, Khodiyar VK, Lovering RC, Talmud P. The gene ontology in 2010: extensions and refinements. Nucleic Acids Res. 2010;38:D331–5.

    Article  CAS  Google Scholar 

  • Boden WE. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High – Density Lipoprotein Intervention Trial. Am J Cardiol. 2000;86:19L–22L.

    Article  CAS  PubMed  Google Scholar 

  • Brun C, Herrmann C, Guenoche A. Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics. 2004;5:95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C-A, Chung W-C, Chiou Y-Y, Yang Y-J, Lin Y-C, Ochs HD, Shieh CC. Quantitative analysis of tissue inflammation and responses to treatment in immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and review of literature. J Microbiol, Immunol Infect. 2015.

    Google Scholar 

  • Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci. 2012;6:59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corominas R, Yang X, Lin GN, Kang S, Shen Y, Ghamsari L, Broly M, Rodriguez M, Tam S, Trigg SA, Fan C, Yi S, Tasan M, Lemmens I, Kuang X, Zhao N, Malhotra D, Michaelson JJ, Vacic V, Calderwood MA, Roth FP, Tavernier J, Horvath S, Salehi-Ashtiani K, Korkin D, Sebat J, Hill DE, Hao T, Vidal M, Iakoucheva LM. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat Commun. 2014;5:3650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S, Kataskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D’Eustachio P, Stein L. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research. 2010;39:691–97.

    Article  Google Scholar 

  • Cuchel M, Rader DJ. Macrophage reverse cholesterol transport key to the regression of atherosclerosis? Circulation. 2006;113:2548–55.

    Article  PubMed  Google Scholar 

  • Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci. 2012;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson WS, Gangani RA, Silva D, Chantepie S, Lagor WR, Chapman MJ, Kontush A. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters relevance to antioxidative function. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29:870–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick RS, Steen EB, Detmer DE. The computer-based patient record:: an essential technology for health care. Washington, DC: National Academies Press; 1997.

    Google Scholar 

  • Emig D, Salomonis N, Baumbach J, Lengauer T, Conklin BR, Albrecht M. AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Research. 2010;38:W755–W62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini G, Maderna P, Sirtori CR. Reverse cholesterol transport: physiology and pharmacology. Atherosclerosis. 1991;88:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Gan Z, Wang J, Salomonis N, Stowe JC, Haddad GG, McCulloch AD, Altintas I, Zambon AC. MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data. BMC Bioinformatics. 2014;15:1–11.

    Article  Google Scholar 

  • Girvan M, Newman ME. Community structure in social and biological networks. Proc Natl Acad Sci U S A. 2002;99:7821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel R, Harsha HC, Pandey A, Prasad TS. Human protein reference database and human proteinpedia as resources for phosphoproteome analysis. Mol Biosyst. 2012;8:453–63.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Durairaj A, Jason LL, Sean Davidson W. High-density lipoprotein proteomics: identifying new drug targets and biomarkers by understanding functionality. Current Cardiovascular Risk Reports. 2010a;4:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon SM, Deng J, Jason Lu L, Sean Davidson W. Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography. Journal of Proteome Research. 2010b;9:5239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon SM, Li H, Zhu X, Shah AS, Lu LJ, Sean Davidson W. A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. Journal of Proteome Research. 2015;14:2686–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Kepes F. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet. 2002;31:60–3.

    Article  CAS  PubMed  Google Scholar 

  • Gunter TD, Terry NP. The emergence of national electronic health record architectures in the United States and Australia: models, costs, and questions. Journal of Medical Internet Research. 2005;7:e3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanauer DA, Rhodes DR, Chinnaiyan AM. Exploring clinical associations using ‘-omics’ based enrichment analyses. PLoS One. 2009;4:e5203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47–52.

    Article  CAS  PubMed  Google Scholar 

  • Heller M, Stalder D, Schlappritzi E, Hayn G, Matter U, Haeberli A. Mass spectrometry – based analytical tools for the molecular protein characterization of human plasma lipoproteins. Proteomics. 2005;5:2619–30.

    Article  CAS  PubMed  Google Scholar 

  • Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA, Kim R, Bilguvar K, López-Giráldez F, Tikhonova I, Mane S, Romano-Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, William Gaynor J, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 2009;37:W115–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull J, Campino S, Rowlands K, Chan M-S, Copley RR, Taylor MS, Rockett K, Elvidge G, Keating B, Knight J, Kwiatkowski D. Identification of common genetic variation that modulates alternative splicing. PLoS Genet. 2007;3:e99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2.

    Article  CAS  PubMed  Google Scholar 

  • Kao HL, Gunsalus KC. Browsing multidimensional molecular networks with the generic network browser (N-Browse). Curr Protoc Bioinformatics, Chapter 9: Unit 9 11. 2008.

    Google Scholar 

  • Karlsson H, Leanderson P, Tagesson C, Lindahl M. Lipoproteomics II: Mapping of proteins in high – density lipoprotein using two – dimensional gel electrophoresis and mass spectrometry. Proteomics. 2005;5:1431–45.

    Article  CAS  PubMed  Google Scholar 

  • Kerstjens-Frederikse WS, van de Laar IMBH, Vos YJ, Verhagen JMA, Berger RMF, Lichtenbelt KD,Wassink-Ruiter JSK, van der Zwaag PA, du Marchie Sarvaas GJ, Bergman KA, Bilardo CM, Roos-Hesselink JW, Janssen JHP, Frohn-Mulder IM, van Spaendonck-Zwarts KY, van Melle JP, Hofstra RMW, Wessels MW. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016.

    Google Scholar 

  • King AD, Przulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics. 2004;20:3013–20.

    Article  CAS  PubMed  Google Scholar 

  • Koh K-N, Im HJ, Chung N-G, Cho B, Kang HJ, Shin HY, Lyu CJ, Yoo KH, Koo HH, Kim H-J, Baek HJ, Kook H, Yoon HS, Lim YT, Kim HS, Ryu KH, Seo JJ, Party the Korea Histiocytosis Working. Clinical features, genetics, and outcome of pediatric patients with hemophagocytic lymphohistiocytosis in Korea: report of a nationwide survey from Korea Histiocytosis Working Party. European Journal of Haematology. 2015;94:51–9.

    Article  CAS  PubMed  Google Scholar 

  • Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, Mélius J, Waagmeester A, Sinha SR, Miller R, Coort SL, Cirillo E, Smeets B, Evelo CT, Pico AR. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Research. 2016;44:D488–D94.

    Article  PubMed  Google Scholar 

  • Lewis GF, Rader DJ. New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circulation research. 2005;96:1221–32.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gordon SM, Zhu X, Deng J, Swertfeger DK, Davidson WS, Lu LJ. Network-based analysis on orthogonal separation of human plasma uncovers distinct high density lipoprotein complexes. J Proteome Res. 2015;14:3082–94.

    Article  CAS  PubMed  Google Scholar 

  • Lu CX, Gong HR, Liu XY, Wang J, Zhao CM, Huang RT, Xue S, Yang YQ. A novel HAND2 loss-of-function mutation responsible for tetralogy of Fallot. International Journal of Molecular Medicine. 2016;37:445–51.

    CAS  PubMed  Google Scholar 

  • Lucas CL, Yu Z, Venida A, Wang Y, Hughes J, McElwee J, Butrick M, Matthews H, Price S, Biancalana M, Wang X, Richards M, Pozos T, Barlan I, Ahmet O, Koneti Rao V, Su HC, Lenardo MJ. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. The Journal of Experimental Medicine. 2014;211:2537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296:910–3.

    Article  CAS  PubMed  Google Scholar 

  • Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circulation Research. 2006;98:1352–64.

    Article  CAS  PubMed  Google Scholar 

  • Naqvi TZ, Shah PK, Ivey PA, Molloy MD, Thomas AM, Panicker S, Ahmed A, Cercek B, Kaul S. Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. The American Journal of Cardiology. 1999;84:1011–17.

    Article  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radical Biology and Medicine. 2006;41:1031–40.

    Article  CAS  PubMed  Google Scholar 

  • Nightingale F. Notes on hospitals (Longman, Green, Longman, Roberts, and Green). 1863.

    Google Scholar 

  • Nofer J-R, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. 2002;161:1–16.

    Article  CAS  PubMed  Google Scholar 

  • O’Madadhain J, Fisher D, White S, Boey YB. The JUNG (Java Universal Network/Graph) framework. In: Technical report UCI-ICS 03–17. Irvine: UC Irvine; 2003. p. 03–17.

    Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature. 2005;435:814–8.

    Article  CAS  PubMed  Google Scholar 

  • Ravasz E. Detecting hierarchical modularity in biological networks. Methods Mol Biol. 2009;541:145–60.

    Article  CAS  PubMed  Google Scholar 

  • Rezaee F, Bruno C, Han J, Levels M, Speijer D, Meijers J. Proteomic analysis of high-density lipoprotein. Proteomics. 2006;6:721–30.

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437:1173–8.

    Article  CAS  PubMed  Google Scholar 

  • Safran C, Meryl B, Edward Hammond W, Labkoff S, Markel-Fox S, Tang PC, Detmer DE. Toward a national framework for the secondary use of health data: an American Medical Informatics Association White Paper. Journal of the American Medical Informatics Association. 2007;14:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato JR, Hoexter MQ, Castellanos XF, Rohde LA. Abnormal brain connectivity patterns in adults with ADHD: a coherence study. PLoS One. 2012a;7:e45671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Front Syst Neurosci. 2012b;6:68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato JR, Takahashi DY, Hoexter MQ, Massirer KB, Fujita A. Measuring network’s entropy in ADHD: a new approach to investigate neuropsychiatric disorders. Neuroimage. 2013;77:44–51.

    Article  PubMed  Google Scholar 

  • Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, Silhavy JL, Xue Y, Kayserili H, Yasuno K, Rosti RO, Abdellateef M, Caglar C, Kasher PR, Cazemier JL, Weterman MA, Cantagrel V, Cai N, Zweier C, Altunoglu U, Bilge Satkin N, Aktar F, Tuysuz B, Yalcinkaya C, Caksen H, Bilguvar K, Fu X-D, Trotta C, Gabriel S, Reis A, Gunel M, Baas F, Gleeson JG. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell. 2014;157:651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H. Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol. 2014;10:e1003517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A. 2003;100:12123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science. 2003;302:249–55.

    Article  CAS  PubMed  Google Scholar 

  • Tan L. Identification of disease biomarkers from brain fMRI data using machine learning techniques: applications in sensorineural hearing loss and attention deficit hyperactivity disorder. University of Cincinnati. 2015.

    Google Scholar 

  • Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, Byun J, Vuletic S, Kassim S, Singh P. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. The Journal of Clinical Investigation. 2007;117:746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner A, Fell DA. The small world inside large metabolic networks. Proc Biol Sci. 2001;268:1803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G-S, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet. 2007;8:749–61.

    Article  CAS  PubMed  Google Scholar 

  • Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab MOHAMAD. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. Journal of Clinical Investigation. 1995;96:2882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods. 2009;6:75–7.

    Article  CAS  PubMed  Google Scholar 

  • Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y, Krainer AR, Jojic N, Scherer SW, Blencowe BJ, Frey BJ. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806.

    Google Scholar 

  • Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, Sun S, Yang F, Shen YA, Murray RR, Spirohn K, Begg BE, Duran-Frigola M, MacWilliams A, Pevzner SJ, Zhong Q, Trigg SA, Tam S, Ghamsari L, Sahni N, Yi S, Rodriguez MD, Balcha D, Tan G, Costanzo M, Andrews B, Boone C, Zhou XJ, Salehi-Ashtiani K, Charloteaux B, Chen AA, Calderwood MA, Aloy P, Roth FP, Hill DE, Iakoucheva LM, Xia Y, Vidal M. Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 2016;164:805–17.

    Article  CAS  PubMed  Google Scholar 

  • Yip KY, Yu H, Kim PM, Schultz M, Gerstein M. The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics. 2006;22:2968–70.

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007;3:e59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Deng J, Fang C, Zhang X, Lu LJ. Molecular network analysis and applications. In: Alterovitz G, Ramoni M, editors. Knowledge-based bioinformatics: from analysis to interpretation. Chichester: Wiley; 2010.

    Google Scholar 

  • Zhang X, Joehanes R, Chen BH, Huan T, Ying S, Munson PJ, Johnson AD, Levy D, O’Donnell CJ. Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nat Genet. 2015;47:345–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jason Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, H., Ren, Z., Ren, S., Guo, X., Zhu, X., Lu, L.J. (2016). Network Analysis and Applications in Pediatric Research. In: Hutton, J. (eds) Pediatric Biomedical Informatics. Translational Bioinformatics, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-10-1104-7_13

Download citation

Publish with us

Policies and ethics