Skip to main content

Novel Composite Inorganic Ceramic Membranes for Gas Separations and Environmental Applications

  • Conference paper
  • First Online:
Transactions on Engineering Technologies

Abstract

Composite ceramic inorganic membranes have been prepared using different types of support with the aim to achieving high selectivity for lower hydrocarbons. Upon modification of the support, the morphology was examined using Scanning Electron Microscopy (SEM), which showed a reduction in the pore radius and pore size distribution. Energy Dispersive X-ray Diffraction (EDAX) was used to determine the elemental composition of the membrane. Gas permeation tests were carried out with inorganic ceramic membrane consisting of a ceramic support and a zeolite layer. The permeance of nitrogen, carbon dioxide, helium, methane, propane and argon through the membrane at varying pressures was determined. The effect of the mean pressure of up to 0.1 MPa on the molar flux of the gases at 294 K was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ediff :

Activation energy (J mol−1)

Ee :

Activation energy for activated gas translational diffusion (J mol−1)

D͚:

Arrhenius-type pre-exponential factor (m2 s−1)

\( \bar{P} \) :

Average pressure drop across the membrane (Pa)

B:

Constant representing Knudsen flow

A:

Constant representing viscous flow

D:

Diffusivity (m2 s−1)

Dg :

Diffusion coefficient

Ds:

Fick’s diffusivity constant

N:

Flux (mol s−1 m−2)

M:

Gas molecular mass (g mol−1)

Ng :

Gas translational diffusion

K:

Knudsen number

S:

Membrane area (m2)

R:

Molar gas constant (8.314 J mol−1 K−1)

Q:

Molar gas flow rate (mol s−1)

J:

Permeability (mol m m−2 s−1 Pa−1)

\( \Delta {\text{P}} \) :

Pressure drop across the membrane (Pa)

dp :

Pore diameter (m)

Ns :

Surface flux

Do :

The intrinsic or corrected diffusivity

T:

Temperature (K)

Å:

Angstrom

μm :

Average velocity (m s−1)

λ :

Mean free path of gas molecule (m)

\( r_{p } \) :

Membrane Pore radius (m)

Г:

Thermodynamic correction factor

References

  1. Abedini R, Nezhadmoghadam A (2010) Application of membrane in gas separation processes: its suitability and mechanisms. Pet Coal 52(2):69–80

    Google Scholar 

  2. Tarmoon I (1999) Middle east oil show, 20–23 February

    Google Scholar 

  3. Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-Vch, Weinheim

    Google Scholar 

  4. Huang P, Xu N, Shi J, Lin Y (1997) Recovery of volatile organic solvent compounds from air by ceramic membranes. Ind Eng Chem Res 36(9):3815–3820

    Article  Google Scholar 

  5. Li H, Schygulla U, Hoffmann J, Niehoff P, Haas-Santo K, Dittmeyer R (2013) Experimental and modeling study of gas transport through composite ceramic membranes. Chem Eng Sci 111:20

    Google Scholar 

  6. Baker RW (2000) Membrane technology. Wiley Online Library, New York

    Google Scholar 

  7. Powell CE, Qiao GG (2006) Polymeric CO2N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1):1–49

    Article  Google Scholar 

  8. Singh RP, Way JD, McCarley KC (2004) Development of a model surface flow membrane by modification of porous vycor glass with a fluorosilane. Ind Eng Chem Res 43(12):3033–3040

    Article  Google Scholar 

  9. Van de Graaf JM, Kapteijn F, Moulijn JA (1999) Modeling permeation of binary mixtures through zeolite membranes. AIChE J 45(3):497–511

    Google Scholar 

  10. Pandey P, Chauhan R (2001) Membranes for gas separation. Prog Polym Sci 26(6):853–893

    Article  Google Scholar 

  11. Julian A, Juste E, Chartier T, Del Gallo P, Richet N (2007) Catalytic membrane reactor: multilayer membranes elaboration. Catalytic membrane reactor: multilayer membranes elaboration. In: Proceedings of the 10th international conference of the european ceramic society, p 718–722

    Google Scholar 

  12. Gobina EN, Oklany JS, Hughes R (1995) Elimination of ammonia from coal gasification streams by using a catalytic membrane reactor. Ind Eng Chem Res 34(11):3777–3783

    Article  Google Scholar 

  13. Li A, Zhao H, Gu J, Xiong G (1997) Preparation of γ-A12O3 composite membrane and examination of membrane defects. Sci China B Chem 40(1):31–36

    Article  Google Scholar 

  14. Sidhu PS, Cussler E (2001) Diffusion and capillary flow in track-etched membranes. J Membr Sci 182(1):91–101

    Article  Google Scholar 

  15. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    Article  Google Scholar 

  16. Burggraaf A (1999) Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations. J Membr Sci 155(1):45–65

    Article  Google Scholar 

  17. Den Exter M, Jansen J, van de Graaf J, Kapteijn F, Moulijn J, Van Bekkum H (1996) Zeolite-based membranes preparation, performance and prospects. Stud Surf Sci Catal 102:413–454

    Article  Google Scholar 

  18. Barrer RM (1990) Porous crystal membranes. J Chem Soc Faraday Trans 86(7):1123–1130

    Article  Google Scholar 

  19. Krishna R, Van Baten J (2006) Describing binary mixture diffusion in carbon nanotubes with the Maxwell-Stefan equations. An investigation using molecular dynamics simulations. Ind Eng Chem Res 45(6):2084–2093

    Article  Google Scholar 

  20. Basile A (2013) Handbook of membrane reactors: fundamental materials science, design and optimisation. Elsevier, UK

    Book  Google Scholar 

  21. Xiao J, Wei J (1992) Diffusion mechanism of hydrocarbons in zeolites—I. Theory. Chem Eng Sci 47(5):1123–1141

    Article  Google Scholar 

  22. Shehu H, Okon E, Gobina E (2015) The use of nano-composite ceramic membranes for gas separations. In: Proceedings of the world congress on engineering, London, UK, WCE 2015, 1–3 July 2015. Lecture Notes in Engineering and Computer Science, pp 1225–1229

    Google Scholar 

Download references

Acknowledgements

The conference was sponsored by IDEAS Research Institute, The Robert Gordon University Aberdeen, United Kingdom. The Authors of this paper acknowledge the center for Process Integration and Membrane Technology at RGU for providing the research infrastructure and the School of Pharmacy Life Science for the SEM/EDAX analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Gobina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Habiba, S., Edidiong, O., Gobina, E. (2016). Novel Composite Inorganic Ceramic Membranes for Gas Separations and Environmental Applications. In: Ao, Si., Yang, GC., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1088-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1088-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1087-3

  • Online ISBN: 978-981-10-1088-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics