Skip to main content

Catalytic Membrane Reactor for VOC Destruction 1

  • Conference paper
  • First Online:
Transactions on Engineering Technologies

Abstract

Platinum-alumina (Pt/γ-Al2O3) membrane was prepared using evaporative-crystallization deposition method for volatile organic compounds (VOCs) destruction. SEM-EDXA observation, BET measurement, permeability assessment and the catalytic oxidation of propane, n-butane and propylene representing VOC was obtained. Remarkable propane conversion of VOC with Pt catalyst was achieved at moderate temperature. The temperature at which the catalytic combustion takes place for the VOC is lower than the one obtained from the literature for the same VOC on Pt/γ-Al2O3 catalysts. The conversion was achieved by varying the reaction temperature using flow-through catalytic membrane reactor operating in the Knudsen flow regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

F:

Permeation flux (mol m−2 s−1 Pa−1)

K:

Knudsen permeation flux (mol m−2 s−1 Pa−1)

L:

Thickness (m)

M:

Molecular weight of gas (g/mol)

Pav :

Average pressure (Pa)

r:

Mean pore radius (m)

R:

Gas constant (8.314 J K−1 mol−1)

T:

Temperature (K)

β:

Viscous permeation flux (mol m−2 s−1 Pa−1)

ε:

Porosity (–)

μ:

Viscosity (Pa s)

τ:

Tortuosity (–)

References

  1. Choudhary T, Banerjee S, Choudhary V (2002) Catalysts for combustion of methane and lower alkanes. Appl Catal A 234(1):1–23

    Article  Google Scholar 

  2. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545

    Article  Google Scholar 

  3. Tamaddoni M, Sotudeh-Gharebagh R, Nario S, Hajihosseinzadeh M, Mostoufi N (2014) Experimental study of the VOC emitted from crude oil tankers. Process Saf Environ Prot 92(6):929–937

    Article  Google Scholar 

  4. Ojala S, Pitkäaho S, Laitinen T, Koivikko NN, Brahmi R, Gaálová J et al (2011) Catalysis in VOC abatement. Top Catal 54(16–18):1224–1256

    Article  Google Scholar 

  5. Ruddy EN, Carroll LA (1993) Select the best VOC control strategy. Chem Eng Progr (USA) 89(7)

    Google Scholar 

  6. Rusu AO, Dumitriu E (2003) Destruction of volatile organic compounds by catalytic oxidation. Environ Eng Manage J 2(4):273–302

    Google Scholar 

  7. Marks J, Rhoads T (1991) Planning saves time and money, when installing VOC controls. Chem Process 5:42

    Google Scholar 

  8. William JC, Lead PE (1997) VOC control strategies in plant design. In: William JC, Lead PE (Eds). Chemical Processing: Project Engineering Annual. Chicago, IL: Putman, Fall, p 44

    Google Scholar 

  9. Mukhopadhyay N, Moretti EC, Nilson T (1993) Current and potential future industrial practices for reducing and controlling volatile organic compounds. Center for Waste Reduction Technologies, American Institute of Chemical Engineers

    Google Scholar 

  10. Patkar A, Laznow J (1992) Hazardous air pollutant control technologies. Hazmat World 2:78

    Google Scholar 

  11. Benard S, Ousmane M, Retailleau L, Boreave A, Vernoux P, Giroir-Fendler A (2009) Catalytic removal of propene and toluene in air over noble metal catalyst This article is one of a selection of papers published in this special issue on biological air treatment. Can J Civil Eng 36(12):1935–1945

    Google Scholar 

  12. Liotta L, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Boreave A et al (2009) Catalytic removal of toluene over Co3O4–CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Catal Lett 127(3–4):270–276

    Article  Google Scholar 

  13. Moretti EC (2002) Reduce VOC and HAP emissions. Chem Eng Prog 98(6):30–40

    Google Scholar 

  14. Nice K, Bryant CW (2000) How catalytic converters work. http://www.howstuffworks.com/HowStuffWorks. Accessed 10 Mar 2004

  15. Heck RM, Farrauto R, Gulati S (2010) Catalytic air pollution control: commercial technology. Platin Met Rev 54(3):180–183

    Article  Google Scholar 

  16. Pina M, Menéndez M, Santamaria J (1996) The Knudsen-diffusion catalytic membrane reactor: an efficient contactor for the combustion of volatile organic compounds. Appl Catal B 11(1):L19–L27

    Article  Google Scholar 

  17. Paulis M, Gandıa L, Gil A, Sambeth J, Odriozola J, Montes M (2000) Influence of the surface adsorption–desorption processes on the ignition curves of volatile organic compounds (VOCs) complete oxidation over supported catalysts. Appl Catal B 26(1):37–46

    Article  Google Scholar 

  18. Tahir SF, Koh CA (1999) Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere 38(9):2109–2116

    Article  Google Scholar 

  19. Paulis M, Peyrard H, Montes M (2001) Influence of chlorine on the activity and stability of Pt/Al2O3 catalysts in the complete oxidation of toluene. J Catal 199(1):30–40

    Article  Google Scholar 

  20. Radic N, Grbic B, Terlecki-Baricevic A (2004) Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts: platinum crystallite size effect. Appl Catal B 50(3):153–159

    Article  Google Scholar 

  21. Kim DH, Kung MC, Kozlova A, Yuan S, Kung HH (2004) Synergism between Pt/Al2O3 and Au/TiO2 in the low temperature oxidation of propene. Catal Lett 98(1):11–15

    Article  Google Scholar 

  22. Gluhoi AC, Bogdanchikova N, Nieuwenhuys BE (2006) Total oxidation of propene and propane over gold–copper oxide on alumina catalysts: comparison with Pt/Al2O3. Catal Today 113(3):178–181

    Article  Google Scholar 

  23. Saracco G, Specchia V (1995) Catalytic ceramic filters for flue gas cleaning. 2. Catalytic performance and modeling thereof. Ind Eng Chem Res 34(4):1480–1487

    Article  Google Scholar 

  24. Saracco G, Specchia S, Specchia V (1996) Catalytically modified fly-ash filters for NOx reduction with NH3. Chem Eng Sci 51(24):5289–5297

    Article  Google Scholar 

  25. Pina M, Irusta S, Menéndez M, Santamaria J, Hughes R, Boag N (1997) Combustion of volatile organic compounds over platinum-based catalytic membranes. Ind Eng Chem Res 36(11):4557–4566

    Article  Google Scholar 

  26. Sanchez Marcano J, Tsotsis T (2002) Catalytic membrane reactors and membrane reactors

    Google Scholar 

  27. Westermann T, Melin T (2009) Flow-through catalytic membrane reactors—principles and applications. Chem Eng Process 48(1):17–28

    Article  Google Scholar 

  28. Koros W, Ma Y, Shimidzu T (1996) Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl Chem 68(7):1479–1489

    Article  Google Scholar 

  29. Saracco G, Specchia V (1994) Catalytic inorganic-membrane reactors: present experience and future opportunities. Catal Rev Sci Eng 36(2):305–384

    Article  Google Scholar 

  30. Julbe A, Farrusseng D, Guizard C (2001) Porous ceramic membranes for catalytic reactors—overview and new ideas. J Membr Sci 181(1):3–20

    Article  Google Scholar 

  31. Coronas J, Santamarıa J (1999) Catalytic reactors based on porous ceramic membranes. Catal Today 51(3):377–389

    Article  Google Scholar 

  32. Hwang S (2001) Inorganic membranes and membrane reactors. Korean J Chem Eng 18(6):775–787

    Article  Google Scholar 

  33. Lu G, da Costa JD, Duke M, Giessler S, Socolow R, Williams R et al (2007) Inorganic membranes for hydrogen production and purification: a critical review and perspective. J Colloid Interface Sci 314(2):589–603

    Article  Google Scholar 

  34. Uemiya S (2004) Brief review of steam reforming using a metal membrane reactor. Top Catal 29(1–2):79–84

    Article  Google Scholar 

  35. Dittmeyer R, Höllein V, Daub K (2001) Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J Mol Catal A: Chem 173(1):135–184

    Article  Google Scholar 

  36. Gobina E, Hughes R (1996) Reaction coupling in catalytic membrane reactors. Chem Eng Sci 51(11):3045–3050

    Article  Google Scholar 

  37. Tiscarño-Lechuga F, Hill C, Anderson M (1996) Effect of dilution in the experimental dehydrogenation of cyclohexane in hybrid membrane reactors. J Membr Sci 118(1):85–92

    Article  Google Scholar 

  38. Coronas J, Menendez M, Santamaria J (1995) Use of a ceramic membrane reactor for the oxidative dehydrogenation of ethane to ethylene and higher hydrocarbons. Ind Eng Chem Res 34(12):4229–4234

    Article  Google Scholar 

  39. Irusta S, Pina M, Menendez M, Santamaria J (1998) Development and application of perovskite-based catalytic membrane reactors. Catal Lett 54(1–2):69–78

    Article  Google Scholar 

  40. Lange C, Storck S, Tesche B, Maier W (1998) Selective hydrogenation reactions with a microporous membrane catalyst, prepared by sol–gel dip coating. J Catal 175(2):280–293

    Article  Google Scholar 

  41. Yamada M, Fugii K, Haru H, Itabashi K (1988) Preparation and catalytic properties of special alumina membrane formed by anodic oxidation of aluminum. The Light Metal Educational Foundation, Inc., Report of the research group for functionalizing of aluminum and its surface films, pp 175–182

    Google Scholar 

  42. Splinter A, Stürmann J, Bartels O, Benecke W (2002) Micro membrane reactor: a flow-through membrane for gas pre-combustion. Sens Actuators B: Chem 83(1):169–174

    Article  Google Scholar 

  43. Zalamea S, Pina M, Villellas A, Menéndez M, Santamaría J (1999) Combustion of volatile organic compounds over mixed-regime catalytic membranes. React Kinet Catal Lett 67(1):13–19

    Article  Google Scholar 

  44. Maira AJ, Lau WN, Lee CY, Yue PL, Chan CK, Yeung KL (2003) Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds. Chem Eng Sci 58(3):959–962

    Article  Google Scholar 

  45. Tsuru T, Kan-no T, Yoshioka T, Asaeda M (2003) A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catal Today 82(1):41–48

    Article  Google Scholar 

  46. Saracco G, Specchia V (2000) Catalytic filters for the abatement of volatile organic compounds. Chem Eng Sci 55(5):897–908

    Article  Google Scholar 

  47. Marécot P, Fakche A, Kellali B, Mabilon G, Prigent P, Barbier J (1994) Propane and propene oxidation over platinum and palladium on alumina: effects of chloride and water. Appl Catal B 3(4):283–294

    Article  Google Scholar 

  48. Uzio D, Miachon S, Dalmon J (2003) Controlled Pt deposition in membrane mesoporous top layers. Catal Today 82(1):67–74

    Article  Google Scholar 

  49. Iojoiu E, Walmsley J, Raeder H, Bredesen R, Miachon S, Dalmon J (2003) Comparison of different support types for the preparation of nanostructured catalytic membranes. Rev Adv Mater Sci 5(3):160–165

    Google Scholar 

  50. Kajama M, Nwogu N, Gobina E (2015) Propylene oxidation using pt-alumina impregnated catalytic membrane reactor. Lecture notes in engineering and computer science: proceedings of the world congress on engineering 2015, WCE 2015, 1–3 July 2015, London, UK, pp 900–903

    Google Scholar 

  51. Bénard S, Giroir-Fendler A, Vernoux P, Guilhaume N, Fiaty K (2010) Comparing monolithic and membrane reactors in catalytic oxidation of propene and toluene in excess of oxygen. Catal Today 156(3):301–305

    Article  Google Scholar 

  52. Jackson S, Willis J, McLellan G, Webb G, Keegan M, Moyes R et al (1993) Supported metal catalysts: preparation, characterization, and function: I. Preparation and physical characterization of platinum catalysts. J Catal 139(1):191–206

    Article  Google Scholar 

  53. Okal J, Zawadzki M (2009) Catalytic combustion of butane on Ru/γ-Al2O3 catalysts. Appl Catal B 89(1):22–32

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Petroleum Technology Development Fund (PTDF) Nigeria for funding this research, and School of Pharmacy and Life Sciences RGU Aberdeen for the SEM and EDXA results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Gobina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kajama, M.N., Nwogu, N.C., Gobina, E. (2016). Catalytic Membrane Reactor for VOC Destruction 1. In: Ao, Si., Yang, GC., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1088-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1088-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1087-3

  • Online ISBN: 978-981-10-1088-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics