Skip to main content

Metabolic Engineering: Achieving New Insights to Ameliorate Metabolic Profiles in Withania somnifera

  • Chapter
  • First Online:

Abstract

Withania somnifera, commonly known as Indian ginseng, has been used for centuries in Ayurvedic system of medicine for its antitumor, antioxidant, antiaging, antiserotogenic, and antistress activities. The various medicinal properties of the plant are accredited to the steroidal lactones (withanolides) present in the plant. Withanolides are synthesized by diverting the metabolite flux away from the isoprenoid pathway by the reductive condensation of farnesyl diphosphate to squalene through the activity of the enzyme squalene synthase. This enzyme squalene synthase is a major branch point involved in the regulation of withanolides. Owing to low concentrations of these bioactive compounds in plant, large biomass is utilized for the preparation of medicinal formulations in pharmaceutical industries to fulfill the growing commercial demand. To protect Withania spp. from becoming an endangered species, the activity of squalene synthase has been well exploited. This chapter is focused on the engineering of isoprenoid biosynthetic pathway in W. somnifera by the introduction of squalene synthase gene to improve the yield of desired product.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BAP:

6-Benzylaminopurine

bp:

Base pair

cDNA:

Complementary DNA

CoA:

Coenzyme A

CR:

Callus-like root

DMAPP:

3,3-Dimethylallyl pyrophosphate

EC:

Enzyme Commission

FPP:

Farnesyl pyrophosphate

GABA:

γ-Aminobutyric acid

GC:

Gas chromatography

GGPP:

Geranylgeranyl pyrophosphate

GPP:

Geranyl pyrophosphate

GUS:

β-Glucuronidase

HMG:

3-Hydroxy-3-methylglutaryl

HR:

Hairy root

IBA:

Indole-3-butyric acid

IPP:

Isopentenyl-5-pyrophosphate

kDa:

Kilodalton

MEP:

2-C-methyl-D-erythritol 4-phosphate

Mg:

Magnesium

mRNA:

Messenger RNA

MS:

Mass spectrometry

MS media:

Murashige and Skoog media

MVA:

Mevalonic acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

PGR:

Plant growth regulators

PPi:

Inorganic phosphate

PSPP:

Presqualene diphosphate

qRT-PCR:

Quantitative real-time PCR

SE:

Standard error

spp:

Species

SQS:

Squalene synthase

WsSQS:

Withania somnifera squalene synthase

References

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93(6):2189–2206. doi:10.1021/cr00022a009

    Article  CAS  Google Scholar 

  • Abhyankar GA, Chinchanikar GS (1996) Response of Withania somnifera Dunal leaf explants in vitro. Phytomorphol 46(3):249–252

    Google Scholar 

  • Abraham A, Kirson I, Glotter E, Lavie D (1968) A chemotaxonomic study of Withania somnifera (L.) Dun. Phytochem 7(6):957–962. doi:10.1016/S0031-9422(00)82182-2

    Article  CAS  Google Scholar 

  • Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Akamine S, Nakamori K, Chechetka SA, Banba M, Umehara Y, Kouchi H, Izui K, Hata S (2003) cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochim Biophys Acta 1626(1–3):97–101

    Article  CAS  PubMed  Google Scholar 

  • Alfonso D, Kapetanidis I (1994) Withanolides from Iochroma gesnerioides. Phytochem 36(1):179–183. doi:10.1016/S0031-9422(00)97035-3

    Article  CAS  Google Scholar 

  • Archana R, Namasivayam A (1999) Antistressor effect of Withania somnifera. J Ethnopharmacol 64(1):91–3

    Article  CAS  PubMed  Google Scholar 

  • Asthana R, Raina MK (1989) Pharmacology of W. somnifera (L.) Dunal – a review. Indian Drugs 26:199–205

    Google Scholar 

  • Atta-ur-Rahman, Jamal AS, Choudary MI, Asif I (1991) Two withanolides from Withania somnifera. Phytochem 30(11):3824–3825. doi:10.1016/0031-9422(91)80125-K

    Article  CAS  Google Scholar 

  • Atta-ur-Rahman, Abbas S, Dur-e-Shawar, Jamal AS, Choudhary MI (1993) New withanolides from Withania spp. J Nat Prod 56(7):1000–1006. doi:10.1021/np50097a003

    Article  CAS  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26(5):599–609. doi:10.1007/s00299-006-0260-0

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Naqvi AA, Mandal S, Ahuja PS (1994) Transformation of Withania somnifera (L.) Dunal by Agrobacterium rhizogenes: Infectivity and phytochemical studies. Phytother Res 8(8):452–455. doi:10.1002/ptr.2650080803

    Article  CAS  Google Scholar 

  • Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ et al (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. J Biol Chem 267(17):11705–11708

    CAS  PubMed  Google Scholar 

  • Begum VH, Sadique J (1988) Long-term effect of herbal drug Withania somnifera on adjuvant-induced arthritis in rats. Indian J Exp Biol 26(11):877–882

    CAS  PubMed  Google Scholar 

  • Belingheri L, Beyer P, Kleinig H, Gleizes M (1991) Solubilization and partial purification of squalene synthase from daffodil microsomal membranes. FEBS Lett 292(1–2):34–36. doi:10.1016/0014-5793(91)80827-P

    CAS  PubMed  Google Scholar 

  • Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, Van Middlesworth FL, Hensens OD et al (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci U S A 90(1):80–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Ye H, Li G (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155(2):179–185. doi:10.1016/S0168-9452(00)00217-X

    Article  CAS  PubMed  Google Scholar 

  • Choudary MI, Abbas S, Jamal AS, Atta-ur-Rahman (1996) Withania somnifera – a source of exotic withanolides. Heterocycles 42(2):555–563. doi:10.3987/COM-94-6935

    Article  Google Scholar 

  • Davis L, Kuttan G (1998) Suppressive effect of cyclophosphamide-induced toxicity by Withania somnifera extract in mice. J Ethnopharmacol 62(3):209–214. doi:10.1016/S0378-8741(98)00039-7

    Article  CAS  PubMed  Google Scholar 

  • Davis L, Kuttan G (2002) Effect of Withania somnifera on CTL activity. J Exp Clin Cancer Res 21(1):115–118

    CAS  PubMed  Google Scholar 

  • Devarenne TP, Shin DH, Back K, Yin S, Chappell J (1998) Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor. Arch Biochem Biophys 349(2):205–215. doi:10.1006/abbi.1997.0463

    Article  CAS  PubMed  Google Scholar 

  • Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129(3):1095–1106. doi:10.1104/pp.001438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhuley JN (2000) Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J Ethnopharmacol 70(1):57–63. doi:10.1016/S0378-8741(99)00177-4

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5(9):221–233. doi:10.1016/S1074-5521(98)90002-3

    Article  Google Scholar 

  • Flores-Sánchez IJ, Ortega-López J, Montes-Horcasitas MC, Ramos-Valdivia AC (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol 43(12):1502–1509. doi:10.1093/pcp/pcf181

    Article  PubMed  Google Scholar 

  • Fulton DC, Tait M, Threlfall DR (1995) Comparative study of the inhibition of rat and tobacco squalene synthase by squalestatins. Phytochemistry 38(5):1137–1141. doi:10.1016/0031-9422(94)00798-X

    Article  CAS  PubMed  Google Scholar 

  • Gamoh K, Hirayama M, lkekawa N (1984) Stereocontrolled synthesis of withanolide D and related compounds. J Chem Soc Perkin Trans 1:449–454. doi:10.1039/p19840000449

    Article  Google Scholar 

  • Glotter E (1991) Withanolides and related ergostane-type steroids. Nat Prod Rep 8(4):415–440. doi:10.1039/NP9910800415

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Samuel G, Bisaria VS, Sundar D (2012) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng 115(6):680–685. doi:10.1016/j.jbiosc.2012.12.011

    Article  CAS  Google Scholar 

  • Gupta N, Sharma P, Santosh Kumar RJ, Vishwakarma RK, Khan BM (2012) Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol Biol Rep 39(9):8803–8812. doi:10.1007/s11033-012-1743-4

    Article  CAS  PubMed  Google Scholar 

  • Hanley K, Chappell J (1992) Solubilization, partial purification, and immunodetection of squalene synthetase from tobacco cell suspension cultures. Plant Physiol 98(1):215–220. doi:10.1104/pp.98.1.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley KM, Nicolas O, Donaldson TB, Smith-Monroy C, Robinson GW, Hellmann GM (1996) Molecular cloning, in vitro expression and characterization of a plant squalene synthetase cDNA. Plant Mol Biol 30(6):1139–1151. doi:10.1007/BF00019548

    Article  CAS  PubMed  Google Scholar 

  • Hata S, Sanmiya K, Kouchi H, Matsuoka M, Yamamoto N, Izui K (1997) cDNA cloning of squalene synthase genes from Mono – and dicotyledonous plants, and expression of the gene in rice. Plant Cell Physiol 38(12):1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Hirota A, Hiraoka N, Ikeshiro Y (1999) Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biol Pharm Bull 22(9):947–950. doi:10.1248/bpb.19.1387

    Article  CAS  PubMed  Google Scholar 

  • Hey SJ, Powers SJ, Beale MH, Hawkins ND, Ward JL, Halford NG (2006) Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol 4(2):219–229

    Article  CAS  Google Scholar 

  • Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB (2006) Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappa B (NF-kappa B) activation and NF-kappaB-regulated gene expression. Mol Cancer Ther 5(6):1434–1445. doi:10.1158/1535-7163.MCT-06-0096

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Osumi T, Hata S (1995) Molecular cloning and functional expression of a cDNA for mouse squalene synthase. Biochim Biophys Acta 1260(1):49–54. doi:10.1016/0167-4781(94)00178-6

    Article  PubMed  Google Scholar 

  • Jana CK, Hoecker J, Woods TM, Jessen HJ, Neuburger M, Gademann K (2011) Synthesis of withanolide A, biological evaluation of its neuritogenic properties, and studies on secretase inhibition. Angew Chem Int Ed Engl 50(36):8407–8411. doi:10.1002/anie.201101869

    Article  CAS  PubMed  Google Scholar 

  • Jayanti S, Sharma AK (1991) Micropropagation of Withania somnifera from germinating seeds and shoot tips. Plant Cell Tiss Organ Cult 26(2):71–73. doi:10.1007/BF00036108

    Article  Google Scholar 

  • Jayaprakasam B, Zhang Y, Seeram N, Nair M (2003) Growth inhibition of tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74(1):125–132. doi:10.1016/j.lfs.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  • Jennings SM, Tsay YH, Fisch TM, Robinson GW (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A 88(14):6038–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang G, McKenzie TL, Conrad DG, Shechter I (1993) Transcriptional regulation by lovastatin and 25-hydroxycholesterol in HepG2 cells and molecular cloning and expression of the cDNA for the human hepatic squalene synthase. J Biol Chem 268(17):12818–12824

    CAS  PubMed  Google Scholar 

  • Kamisako W, Morimoto K, Makino I, Isoi K (1984) Changes in triterpenoid content during the growth cycle of cultured plant cells. Plant Cell Physiol 25(8):1571–1574

    CAS  Google Scholar 

  • Kapoor LD (2001) Handbook of Ayurvedic medicinal plants. CRC Press, London, pp 337–338

    Google Scholar 

  • Karst F, Lacroute F (1977) Ertosterol biosynthesis in Saccharomyces cerevisiae: mutants deficient in the early steps of the pathway. Mol Gen Genet 154(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Kaul KN (1957) On the origin, distribution and cultivation of Ashwagandha, the so called Withania somnifera Dunal, of Indian literature on materia medica. Pharmaceut and Drug Committee, symposium on the utilization of the Indian medicinal plants, Lucknow, pp 7–8

    Google Scholar 

  • Keller RK (1996) Squalene synthase inhibition alters metabolism of nonsterols in rat liver. Biochim Biophys Acta 1303(3):169–179

    Article  PubMed  Google Scholar 

  • Kim O-T, Seong N-S, Kim M-Y, Hwang B (2005) Isolation and characterization of squalene synthase cDNA from Centella asiatica (L.) urban. J Plant Biol 48(3):263–269. doi:10.1007/BF03030521

    Article  CAS  Google Scholar 

  • Kim T-D, Han J-Y, Huh GH, Choi Y-E (2011a) Expression and functional characterization of three squalene synthase genes associated with saponin biosynthesis in Panax ginseng. Plant Cell Physiol 52(1):125–137. doi:10.1093/pcp/pcq179

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Cho JH, Park S, Han JY, Back K, Choi YE (2011b) Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum. Planta 233(2):343–355. doi:10.1007/s00425-010-1292-9

    Article  CAS  PubMed  Google Scholar 

  • Kirson I, Abraham A, Lavie D (1977) Chemical analysis of hybrids of Withania somnifera L. (Dun.) Chemotypes III (Israel) by Indian I (Delhi). Israel J Chem 16(1):22–24. doi:10.1002/ijch.197700007

    Article  Google Scholar 

  • Kovganko NV, Kashkan ZN (1997) Advances in the chemical synthesis of withanolides. Chem Nat Compd 33(2):133–145. doi:10.1007/BF02291529

    Article  CAS  Google Scholar 

  • Kribii R, Arro M, Del Arco A, Gonzalez V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase – involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249(1):61–69. doi:10.1111/j.1432-1033.1997.00061.x

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kushwaha RA (2006) Medicinal evaluation of Withania somnifera (L.) Dunal (Ashwagandha). Asian J Chem 18(2):1401–1404

    CAS  Google Scholar 

  • Kumar V, Murthy KNC, Bhamidi S, Sudha CG, Ravishankar GA (2005) Genetically modified hairy roots of Withania somnifera dunal: a potent source of rejuvenating principles. Rejuv Res 8(1):37–45. doi:10.1089/rej.2005.8.37

    Article  CAS  Google Scholar 

  • Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14(1):19–28. doi:10.1016/j.ymben.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  • Lavie D, Glotter E, Shvo Y (1965a) Constituents of Withania somnifera. III. The side chain of Withaferin A. J Org Chem 30(6):1774–1778. doi:10.1021/jo01017a015

    Article  CAS  Google Scholar 

  • Lavie D, Glotter E, Shvo Y (1965b) Constituents of Withania somnifera. IV. The structure of withaferin A. J Chem Soc 1965:7517–7531. doi:10.1039/JR9650007517

    Article  Google Scholar 

  • Lee JH, Yoon YH, Kim HY, Shin DH, Kim DU, Lee IJ, Kim KU (2002) Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum). Mol Cells 13(3):436–443

    CAS  PubMed  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(8):976–984. doi:10.1093/pcp/pch126

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-Deoxy-D-Xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65. doi:10.1146/annurev.arplant.50.1.47

    Article  CAS  PubMed  Google Scholar 

  • Lockley WJS, Rees HH, Goodwin TW (1976) Biosynthesis of steroidal withanolides in Withania somnifera. Phytochemistry 15(6):937–939. doi:10.1016/S0031-9422(00)84374-5

    Article  CAS  Google Scholar 

  • LoGrasso PV, Soltis DA, Boettcher BR (1993) Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch Biochem Biophys 307(1):193–199. doi:10.1006/abbi.1993.1578

    Article  CAS  PubMed  Google Scholar 

  • Lu HY, Liu JM, Zhang HC, Yin T, Gao SL (2008) Ri-mediated Transformation of Glycyrrhiza uralensis with a Squalene Synthase Gene (GuSQS1) for Production of Glycyrrhizin. Plant Mol Biol Rep 26(1):1–11. doi:10.1007/s11105-008-0018-7

    Article  CAS  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007) Purification and characterization of a novel glucosyltransferase specific to 27 β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim Biophys Acta 1774(9):1199–1207. doi:10.1016/j.bbapap.2007.06.015

    Article  CAS  PubMed  Google Scholar 

  • Malhotra CL, Mehta VL, Das PK, Dhalla NS (1965) Studies on Withania-ashwagandha, Kaul. IV. The effect of total alkaloids (ashwagandholine) on the central nervous system. Indian J Physiol Pharmacol 9(3):127–136

    CAS  PubMed  Google Scholar 

  • Mano Y, Nabeshima S, Matsui C, Ohkawa H (1986) Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agr Biol Chem 50(11):2715–2722. doi:10.1080/00021369.1986.10867820

    CAS  Google Scholar 

  • Marie Winters ND (2006) Ancient medicine, modern use: Withania somnifera and its potent role in integrative oncology. Altern Med Rev 11(4):269–277

    PubMed  Google Scholar 

  • McKenzie TL, Jiang G, Straubhaar JR, Conrad DG, Shechter I (1992) Molecular cloning, expression, and characterization of the cDNA for the rat hepatic squalene synthase. J Biol Chem 267(30):21368–21374

    CAS  PubMed  Google Scholar 

  • Merkulov S, Assema FV, Springer J, Carmen AFD, Mooibroek H (2000) Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation. Yeast 16(3):197–206. doi:10.1002/(SICI)1097-0061(200002)16:3<197::AID-YEA513>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili MH, Fakhr-Tabatabaei SM, Bonfill M, Alizadeh H, Cusido RM, Ghassempour A, Palazón (2009a) Morphology and withanolide production of Withania coagulans hairy root cultures. Eng Life Sci 9(3):197–204. doi:10.1002/elsc.200800081

    Article  CAS  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J (2009b) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14(7):2373–2393. doi:10.3390/molecules14072373

    Article  CAS  PubMed  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2011) Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biol Plant 55(2):357–360. doi:10.1007/s10535-011-0054-2

    Article  CAS  Google Scholar 

  • Mishra L-C, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): a review. Altern Med Rev 5(4):334–346

    CAS  PubMed  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50(8):975–981. doi:10.1111/j.1744-7909.2008.00680.x

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. P Natl Acad Sci USA 92(6):2328–2332

    Article  CAS  Google Scholar 

  • Nittala SS, Lavie D (1981) Chemistry and genetics of withanolides in Withania somnifera hybrids. Phytochemistry 20(12):2741–2748. doi:10.1016/0031-9422(81)85278-8

    Article  CAS  Google Scholar 

  • Paradise EM, Kirby J, Chan R, Keasling JD (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100(2):371–378. doi:10.1002/bit.21766

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Patel P, Kumari U, Kendurkar SV, Khan BM (2014) Microprojectile bombardment assisted agroinfection increases transformation efficiency of Withania somnifera (L.). Res Biotechnol 5(4):13–24

    Google Scholar 

  • Patel N, Patel P, Kendurkar SV, Thulasiram HV, Khan BM (2015) Overexpression of squalene synthase in Withania somnifera leads to enhanced withanolide biosynthesis. Plant Cell Tiss Organ Cult 122(2):409–420. doi:10.1007/s11240-015-0778-3

    Article  CAS  Google Scholar 

  • Payne J, Hamill JD, Robins RJ, Rhodes MJC (1987) Production of hyoscyamine by ‘Hairy Root’ cultures of Datura stramonium. Planta Med 53(5):474–478. doi:10.1055/s-2006-962776

    Article  CAS  PubMed  Google Scholar 

  • Prakash J, Gupta SK, Kochupillai V, Gupta YK, Joshi S (2001) Chemopreventive activity of Withania somnifera in experimentally induced fibrosarcoma tumors in Swiss albino mice. Phytother Res 15(3):240–244. doi:10.1002/ptr.779

    Article  CAS  PubMed  Google Scholar 

  • Prakash J, Gupta SK, Dinda AK (2002) Withania somnifera root extract prevents DMBA-induced squamous cell carcinoma of skin in Swiss albino mice. Nutr Cancer 42:91–97. doi:10.1207/S15327914NC421_12

    Article  PubMed  Google Scholar 

  • Rani G, Grover IS (1999) In vitro callus induction and regeneration studies in Withania somnifera. Plant Cell Tiss Org Cult 57(1):23–27. doi:10.1023/A:1006329532561

    Article  Google Scholar 

  • Rani G, Virk GS, Nagpal A (2003) Callus induction and plantlet regeneration in Withania somnifera (L.) dunal. In Vitro Cell Dev Biol Plant 39(5):468–474. doi:10.1079/IVP2003449

    Article  Google Scholar 

  • Ray AB, Gupta M (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. In: Zechmeister L, Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural products, vol 63, pp 1–106. doi:10.1007/978-3-7091-9281-8_1

    Google Scholar 

  • Ray S, Jha S (2001) Production of withaferin A in shoot cultures of Withania somnifera. Planta Med 67(5):432–436. doi:10.1055/s-2001-15811

    Article  CAS  PubMed  Google Scholar 

  • Re EB, Jones D, Learned RM (1995) Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J 7(5):771–784. doi:10.1046/j.1365-313X.1995.07050771.x

    Article  CAS  PubMed  Google Scholar 

  • Rilling HC, Epstein WW (1969) Mechanism of squalene biosynthesis. Presqualene, a pyrophosphorylated precursor to squalene. J Am Chem Soc 91(4):1041–1042. doi:10.1021/ja01032a052

    Article  CAS  Google Scholar 

  • Robinson GW, Tsay YH, Kienzle BK, Smith-Monroy CA, Bishop RW (1993) Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol 13(5):2706–2717. doi:10.1128/MCB.13.5.2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574. doi:10.1039/A709175C

    Article  CAS  PubMed  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P, Misra L, Uniyal GC, Tuli R, Sangwan NS (2007) Withanolide A biogeneration in in vitro shoot cultures of ashwagandha (Withania somnifera Dunal), a main medicinal plant in Ayurveda. Chem Pharm Bull 55(9):1371–1375. doi:10.1248/cpb.55.1371

    Article  CAS  PubMed  Google Scholar 

  • Saritha KV, Naidu CV (2007) In vitro flowering of Withania somnifera Dunal. An important antitumor medicinal plant. Plant Sci 172(4):847–851. doi:10.1016/j.plantsci.2006.12.016

    Article  CAS  Google Scholar 

  • Sasiak K, Rilling HC (1988) Purification to homogeneity and some properties of squalene synthetase. Arch Biochem Biophys 260(2):622–627. doi:10.1016/0003-9861(88)90490-0

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Biql V (1997) Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 30(2):181–190. doi:10.1016/S0197-0186(96)00025-3

    Article  CAS  PubMed  Google Scholar 

  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(8):869–877. doi:10.1016/j.phytochem.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10(2):151–155. doi:10.1016/S0958-1669(99)80026-3

    Article  CAS  PubMed  Google Scholar 

  • Sharada AC, Solomon FE, Devi PU (1996) Antitumor and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma in vivo. Acta Oncol 35(1):95–100. doi:10.3109/02841869609098486

    Article  CAS  PubMed  Google Scholar 

  • Sharma MM, Ali DJ, Batra A (2010) Plant regeneration through in vitro somatic embryogenesis in Ashwaganda (Withania somnifera (L.) Dunal). Researcher 2(3):1–6

    Google Scholar 

  • Siddique NA, Bari MA, Shahnewaz S, Rahman MH, Khan MSI, Islam MS (2004) Plant regeneration of Withania somnifera (L.) Dunal (Ashwagandha) from nodal segments derived callus an endangered medicinal plant in Bangladesh. J Biol Sci 4(2):219–223. doi:10.3923/jbs.2004.219.223

    Article  Google Scholar 

  • Singh S, Kumar S (1998) Withania somnifera: the Indian ginseng ashwagandha. Central Institute of Medicinal and Aromatic Plants, Lucknow

    Google Scholar 

  • Song L (2003) Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants. Anal Biochem 317(2):180–185. doi:10.1016/S0003-2697(03)00138-6

    Article  CAS  PubMed  Google Scholar 

  • Spurgeon SL, Porter JW (1981) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New York, pp 1–46

    Google Scholar 

  • Threlfall DR, Whitehead IM (1988) Coordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoids phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27(8):2567–2580. doi:10.1016/0031-9422(88)87028-6

    Article  CAS  Google Scholar 

  • Tozawa R, Ishibashi S, Osuga J, Yagyu H, Oka T, Chen Z, Ohashi K, Perrey S, Shionoiri F, Yahagi N, Harada K, Gotoda T, Yazaki Y, Yamada N (1999) Embryonic lethality and defective neural tube closure in mice lacking squalene synthase. J Biol Chem 274(43):30843–30848. doi:10.1074/jbc.274.43.30843

    Article  CAS  PubMed  Google Scholar 

  • Valizadeh J, Valizadeh M (2009) In vitro callus induction and plant regeneration from Withania coagulans: a valuable medicinal Plant. Pak J Biol Sci 12(21):1415–1419. doi:10.3923/pjbs.2009.1415.1419

    Article  CAS  PubMed  Google Scholar 

  • Veleiro AS, Oberti JC, Burton G (2005) Chemistry and bioactivity of withanolides from South American Solanaceae. In: Atta-ur-Rahman (ed) Studies in natural products chemistry 32 (part L). Elsevier, Amsterdam, pp 1019–1052

    Chapter  Google Scholar 

  • Vitali G, Conte L, Nicoletti M (1996) Withanolide composition and in vitro culture of Italian Withania somnifera. Planta Med 62(3):287–288. doi:10.1055/s-2006-957884

    Article  CAS  PubMed  Google Scholar 

  • Vogeli U, Chappell J (1988) Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88(4):1291–1296. doi:10.1104/pp.88.4.1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Song Y, Shen H, Liu Y, Li Z, Wang H, Chen J, Liu B, Ye H (2012) Effect of antisense squalene synthase gene expression on the increase of artemisinin content in Artemisia anuua . Transgenic plants – advances and limitations. PhD. Yelda Ozden Çiftçi (Ed.), ISBN: 978-953-51-0181-9, InTech, pp 397–406. Available from: http://www.intechopen.com/books

  • Watt GA (1972) Dictionary of the economic products of India, vol 6. Cosmo Publication, Delhi, p 309

    Google Scholar 

  • Wentzinger LF, Bach TJ, Hartmann MA (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Plant Physiol 130(1):334–346. doi:10.1104/pp.004655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden A, Lavie D (1962) Constituents of Withania somnifera. I. Functional groups of withaferin. J Chem Soc 567:2925–2927. doi:10.1039/JR9620002925

    Article  Google Scholar 

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40(9):993–998

    Article  CAS  PubMed  Google Scholar 

  • Zhao MW, Liang WQ, Zhang DB, Wang N, Wang CG, Pan YJ (2007) Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J Microbiol Biotechnol 17(7):1106–1112

    CAS  PubMed  Google Scholar 

  • Zhou C, Zhao D, Sheng Y, Liang G, Tao J (2012) Molecular cloning and expression of squalene synthase and 2,3-oxidosqualene cyclase genes in persimmon (Diospyros kaki L.) fruits. Mol Biol Rep 39:1125–1132. doi:10.1007/s11033-011-0841-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi, and CSIR-National Chemical Laboratory, Pune, India, for the financial support. NP and PP acknowledge the University Grants Commission (UGC), New Delhi, India, for providing Senior Research Fellowship and DSK Postdoctoral Fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Patel, N., Patel, P., Khan, B.M. (2016). Metabolic Engineering: Achieving New Insights to Ameliorate Metabolic Profiles in Withania somnifera . In: Tsay, HS., Shyur, LF., Agrawal, D., Wu, YC., Wang, SY. (eds) Medicinal Plants - Recent Advances in Research and Development. Springer, Singapore. https://doi.org/10.1007/978-981-10-1085-9_7

Download citation

Publish with us

Policies and ethics