Skip to main content

Deciphering the Biosynthetic Pathways of Bioactive Compounds In Planta Using Omics Approaches

  • Chapter
  • First Online:
Medicinal Plants - Recent Advances in Research and Development

Abstract

“Plant bioactive compounds” are secondary metabolites mainly composed of terpenoids, alkaloids, and phenolics that are observed to have varied pharmacological effects in preventing or intervening in human disorders. Due to the great potential of plant secondary metabolites for use in the nutraceutical and pharmaceutical industries, genetic engineering techniques and bioreactor approaches may be efficient ways to mass produce bioactive compounds for industrial use. However, before mass production strategies can be implemented to fulfill industrial needs, a full understanding of the biosynthetic pathways and underlying regulation mechanisms must be gained. The conventional “one enzyme, one gene” study approach is insufficient for elucidating the biosynthetic pathways of most bioactive compounds, especially those of non-model medicinal plants due to lack of available whole genome information. It is foreseen that the emerging “omics” technologies will be useful platforms to provide more global genomics, transcriptomics, proteomics, and metabolomics information to help uncover the biosynthesis pathways of secondary metabolites, especially in medicinal plants. The aim of this review is to summarize the current research progress and knowledge in deciphering the biosynthesis pathways of plant bioactive secondary metabolites selected from the three major compound types using omics approaches.

*Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′OMT:

3′-O-Methyltransferase

4′OMT:

3′-Hydroxyl-N-methylcoclaurine 4′-O-methyltransferase

6OMT:

Norcoclaurine 6-O-methyltransferase

7DLGT:

7-Deoxyloganetic acid glucosyltransferase

8HGO:

8-Hydroxygeraniol oxidoreductase

16OMT:

O-Methyltransferase

β-AS:

β-Amyrin synthase

ANR:

Anthocyanidin reductase

ANS:

Anthocyanidin synthase

AVLBS:

Anhydrovinblastine synthase

BBE:

Berberine bridge enzyme

BIA:

Benzylisoquinoline alkaloid

BIS1:

bHLH iridoid synthase 1

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

CNMT:

Coclaurine N-methyltransferase

CODM:

Codeine O-demethylase

COR:

Codeinone reductase

CPP:

Copalyl diphosphate

CPR:

Cytochrome P450 reductase

CPS:

Copalyl diphosphate synthase

CYP:

Cytochrome P450

CYP82:

N-Methylcanadine 1-hydroxylase

D4H:

Desacetoxyvindoline-4-hydroxylase

DAT:

Deacetylvindoline-4-O-acetyltransferase

DDS:

Dammarenediol synthase

DFR:

Dihydroflavonol reductase

DL7H:

7-Deoxyloganic acid 7-hydroxylase

DMAPP:

Dimethylallyl diphosphate

DXS:

1-Deoxy-D-xylulose-5-phosphate synthase

EST:

Expressed sequence tag

F3′5′H:

Flavonoid 3′,5′-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

FLS:

Flavone synthase

FPP:

Farnesyl diphosphate

FPKM:

Fragments per kilobase of transcript per million mapped reads

FPPS:

Farnesyl diphosphate synthase

G8O:

Geraniol-8-oxidase

G10H:

Geranyl 10-hydroxylase

GGPP:

Geranylgeranyl diphosphate

GGPPS:

GGPP synthase

GT:

Glycosyltransferase

IFS:

Isoflavone synthase

IO:

Iridoid oxidase

IPP:

Isopentenyl diphosphate

IPPI:

IPP isomerase

IS:

Iridoid synthase

JA:

Jasmonic acid

KSL:

Kaurene synthase-like diphosphate synthase

LAMT:

Loganic acid methyltransferase

LAR:

Leucocyanidin 4-reductase

LDOX:

Leucocyanidin dioxygenase

MEP:

2-C-Methyl-D-erythritol 4-phosphate

MeJA:

Methyl jasmonate

MVA:

Mevalonate

N7OMT:

Norreticuline 7-O-methyltransferase

NCS:

Norcoclaurine synthase

NGS:

Next generation sequencing

NMCH:

(S)-N-methylcoclaurine 3′-hydroxylase

NMT:

N-Methyltransferase

OAS:

Oleanolic acid synthase

ORCA3:

Octadecanoid-responsive Catharanthus APETALA2-domain 3

P5βR:

Progesterone-5β-reductase

PPD:

Protopanaxadiol

PPDS:

Protopanaxadiol synthase

PPT:

Protopanaxatriol

PPTS:

Protopanaxatriol synthase

RPKM:

Reads per kilobase per million mapped reads

SM:

Secondary metabolite

SalAT:

Salutaridinol 7-O-acetyltransferase

SalR:

Salutaridine reductase

SalSyn:

Salutaridine synthase

SE:

Squalene epoxidase

SGD:

Strictosidine β-D-glucosidase

SLS:

Secologanin synthase

SQ:

Squalene

SS:

Squalene synthase

STOX:

(S)-Tetrahydroprotoberberine oxidase

STR:

Strictosidine synthase

STS:

Stilbene synthase

T16H:

Tabersonine 16-hydroxylase

T6ODM:

Thebaine 6-O-demethylase

TDC:

Tryptophan decarboxylase

THAS:

Tetrahydroalstonine synthase

TF:

Transcription factors

TIA:

Terpenoid indole alkaloid

TNMT:

Tetrahydroprotoberberine N-methyltransferase

TPS:

Terpene synthases

UGT:

UDP-dependent glycosyltransferase

VIGS:

Virus-induced gene silencing

References

  • Aerts RJ, Mordue AJ (1997) Feeding deterrence and toxicity of neem triterpenoids. J Chem Ecol 23(9):2117–2132

    Article  CAS  Google Scholar 

  • Allen RS, Miller JA, Chitty JA, Fist AJ, Gerlach WL, Larkin PJ (2008) Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy. Plant Biotechnol J 6(1):22–30

    CAS  PubMed  Google Scholar 

  • Ashour M, Wink M, Gershenzon J (2010) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. In: Wink M (ed) Biochemistry of plant secondary metabolism. Wiley, New York, pp 258–303

    Chapter  Google Scholar 

  • Ayabe S, Udagawa A, Furuya T (1988) NAD(P)H-dependent 6′-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch Biochem 261(2):458–462

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin GA, Facchini PJ (2013) Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochem Biophys Res Commun 431(3):597–603

    Article  CAS  PubMed  Google Scholar 

  • Bernhoft A (2010) A brief review on bioactive compounds in plants. Bioactive compounds in plants-benefits and risks for man and animals. The Norwegian Academy of Science and Letters, Novus forlag, Oslo, pp 11–18

    Google Scholar 

  • Besseau S, Kellner F, Lanoue A, Thamm AM, Salim V, Schneider B, Geu-Flores F, Hofer R, Guirimand G, Guihur A, Oudin A, Glevarec G, Foureau E, Papon N, Clastre M, Giglioli-Guivarc’h N, St-Pierre B, Werck-Reichhart D, Burlat V, De Luca V, O’Connor SE, Courdavault V (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163(4):1792–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140(1):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland MJ, Wong E (1975) Purification and kinetic properties of chalcone-flavanone isomerase from soya bean. Eur J Biochem 50(2):383–389

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851

    Article  CAS  Google Scholar 

  • Bovy A, Schijlen E, Hall RD (2007) Metabolic engineering of flavonoids in tomato: the potential for metabolomics. Metabolomics 3:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed 87:218–228

    Article  CAS  Google Scholar 

  • Buckingham J (2007) Dictionary of natural products. Chapman and Hall CRC, London

    Google Scholar 

  • Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340

    Article  CAS  PubMed  Google Scholar 

  • Busia K, Kasilo OM (2010) Overview of traditional medicine in Ecowas Member States. Afr Health Monit 13:16–24

    Google Scholar 

  • Champagne A, Rischer H, Oksman-Caldentey KM, Boutry M (2012) In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites. Proteomics 12(23–24):3536–3547

    Article  CAS  PubMed  Google Scholar 

  • Chen CYC (2011) TCM Database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLos One 6(1), e15939

    Google Scholar 

  • Chen F, Ro DK, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135(4):1956–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30(9):1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Cheng QQ, Su P, Hu YT, He YF, Gao W, Huang LQ (2014) RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36(2):363–369

    Article  CAS  PubMed  Google Scholar 

  • Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442

    Article  CAS  PubMed  Google Scholar 

  • Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barcelo AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146(2):403–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochemistry and molecular biology of plants, 2nd edn. Wiley, Blackwell

    Google Scholar 

  • Crozier A (2008) Plant secondary metabolites: their role in the human diet. Planta Med 74(3):315–315

    Article  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Plant secondary metabolites: occurrence, structure and role in the human diet. Wiley, Blackwell

    Google Scholar 

  • Dang TT, Facchini PJ (2014) CYP82Y1 is N-methylcanadine 1-hydroxylase, a key noscapine biosynthetic enzyme in opium poppy. J Biol Chem 289(4):2013–2026

    Article  CAS  PubMed  Google Scholar 

  • Dang TTT, Onoyovwi A, Farrow SC, Facchini PJ (2012) Biochemical genomics for gene discovery in benzylisoquinoline alkaloid biosynthesis in opium poppy and related species. Methods Enzymol 515:231–266

    Article  CAS  PubMed  Google Scholar 

  • Dang TT, Chen X, Facchini PJ (2015) Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat Chem Biol 11(2):104–106

    Article  CAS  PubMed  Google Scholar 

  • Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. Iubmb Life 59(3):151–162

    Article  CAS  PubMed  Google Scholar 

  • de Bernonville TD, Foureau E, Parage C, Lanoue A, Clastre M, Londono MA, Oudin A, Houille B, Papon N, Besseau S, Glevarec G, Atehortua L, Giglioli-Guivarc’h N, St-Pierre B, De Luca V, O’Connor SE, Courdavault V (2015) Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome. BMC Genomics 16:619–637

    Google Scholar 

  • De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    Article  PubMed  CAS  Google Scholar 

  • Decker G, Wanner G, Zenk MH, Lottspeich F (2000) Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21(16):3500–3516

    Article  CAS  PubMed  Google Scholar 

  • Del Rio D, Borges G, Crozier A (2010) Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Brit J Nutr 104(S3):S67–S90

    Article  PubMed  CAS  Google Scholar 

  • Desgagne-Penix I, Facchini PJ (2012) Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J 72(2):331–344

    Article  CAS  PubMed  Google Scholar 

  • Desgagne-Penix I, Farrow SC, Cram D, Nowak J, Facchini PJ (2012) Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy. Plant Mol Biol 79(3):295–313

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2–3):277–305

    Article  CAS  Google Scholar 

  • Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30(3):127–131

    Article  CAS  PubMed  Google Scholar 

  • Farrow SC, Facchini PJ (2013) Dioxygenases catalyze O-demethylation and O, O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy. J Biol Chem 288(40):28997–29012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow SC, Hagel JM, Facchini PJ (2012) Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids. Phytochemistry 77:79–88

    Article  CAS  PubMed  Google Scholar 

  • Fischer TC, Halbwirth H, Meisel B, Stich K, Forkmann G (2003) Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism. Arch Biochem Biophys 412(2):223–230

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29(10):1153–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Sun HX, Xiao HB, Cui GH, Hillwig ML, Jackson A, Wang X, Shen Y, Zhao N, Zhang LX, Wang XJ, Peters RJ, Huang LQ (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492(7427):138–142

    Article  CAS  PubMed  Google Scholar 

  • Glenn WS, Runguphan W, O’Connor SE (2013) Recent progress in the metabolic engineering of alkaloids in plant systems. Curr Opin Biotech 24(2):354–365

    Article  CAS  PubMed  Google Scholar 

  • Goldberg D, Soleas G (2003) Resveratrol: biochemistry, cell biology and the potential role in disease prevention. In: Wine: a scientific exploration. Taylor and Francis, London, pp 160–198

    Google Scholar 

  • Gongora-Castillo E, McKnight TD, O’Connor S, Childs KL, Buell C, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, DellaPenna D (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLos One 7(12), e52506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, Fennell AY (2009) VitisNet: “Omics” integration through grapevine molecular networks. PLoS One 4(12), e8365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Zhou YJJ, Hillwigc ML, Shen Y, Yang L, Wang YJ, Zhang XA, Liu WJ, Peters RJ, Chen XY, Zhao ZBK, Huang LQ (2013) CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci Biol 110(29):12108–12113

    Article  CAS  Google Scholar 

  • Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54(5):647–672

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Mandal R, Han B, Han J, Dinsmore DR, Borchers CH, Wishart DS, Facchini PJ (2015a) Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:220–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagel JM, Morris JS, Lee EJ, Desgagne-Penix I, Bross CD, Chang L, Chen X, Farrow SC, Zhang Y, Soh J, Sensen CW, Facchini PJ (2015b) Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:227–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahlbrock K (1981) Flavonoids. Biochem Plants 7:425–456

    CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47(12):1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71(1):36–46

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Kim HJ, Kwon YS, Choi YE (2011) The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 52(12):2062–2073

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Hwang HS, Choi SW, Kim HJ, Choi YE (2012) Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 53(9):1535–1545

    Article  CAS  PubMed  Google Scholar 

  • Han JY, Kim MJ, Ban YW, Hwang HS, Choi YE (2013) The involvement of beta-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 54(12):2034–2046

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68(22–24):2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Hemmerly TE (1977) A ginseng farm in Lawrence County, Tennessee. Econ Bot 31(2):160–162

    Article  Google Scholar 

  • Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44(2):334–341

    Article  CAS  PubMed  Google Scholar 

  • Holl J, Vannozzi A, Czemmel S, D’Onofrio C, Walker AR, Rausch T, Lucchin M, Boss PK, Dry IB, Bogs J (2013) The R2R3-MYB transcription factors MYB14 and MYB15 regulate stilbene biosynthesis in Vitis vinifera. Plant Cell 25(10):4135–4149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong L, Qian Q, Tang D, Wang K, Li M, Cheng Z (2012) A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta 236(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Hyun TK, Lee S, Rim Y, Kumar R, Han X, Lee SY, Lee CH, Kim JY (2014) De-novo RNA sequencing and metabolite profiling to identify genes involved in anthocyanin biosynthesis in Korean black raspberry (Rubus coreanus Miquel). PLoS One 9(2), e88292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inui T, Kawano N, Shitan N, Yazaki K, Kiuchi F, Kawahara N, Sato F, Yoshimatsu K (2012) Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase in transgenic Coptis japonica plants. Biol Pharm Bull 35(5):650–659

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian Public Consortium for Grapevine Genome C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jayakodi M, Lee SC, Lee YS, Park HS, Kim NH, Jang W, Lee HO, Joh HJ, Yang TJ (2015) Comprehensive analysis of Panax ginseng root transcriptomes. BMC Plant Biol 15:138–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung W, Yu O, Lau SM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  CAS  PubMed  Google Scholar 

  • Kalra S, Puniya BL, Kulshreshtha D, Kumar S, Kaur J, Ramachandran S, Singh K (2013) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum. PLoS One 8(12), e83336

    Google Scholar 

  • Kandaswami C, Middleton E Jr (1994) Free radical scavenging and antioxidant activity of plant flavonoids. In: Armstrong D (ed) Free radicals in diagnostic medicine. Springer, New York, pp 351–376

    Chapter  Google Scholar 

  • Kang JH, Song KH, Woo JK, Park MH, Rhee MH, Choi C, Oh SH (2011) Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Food Hum Nutr 66(3):298–305

    Article  CAS  Google Scholar 

  • Kaushik N (2005) Saponins of Chlorophytum species. Phytochem Rev 4(2–3):191–196

    Article  CAS  Google Scholar 

  • Kempe K, Higashi Y, Frick S, Sabarna K, Kutchan TM (2009) RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes. Phytochemistry 70(5):579–589

    Article  CAS  PubMed  Google Scholar 

  • Khorolragchaa A, Kim YJ, Rahimi S, Sukweenadhi J, Jang MG, Yang DC (2014) Grouping and characterization of putative glycosyltransferase genes from Panax ginseng Meyer. Gene 536(1):186–192

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim YB, Uddin MR, Lee S, Kim SU, Park SU (2014) Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. ACS Synth Biol 3(10):773–779

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Zhang DB, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33(6):717–735

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27(6):675–684

    Article  CAS  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013:162750

    PubMed  PubMed Central  Google Scholar 

  • Kutchan TM, Hampp N, Lottspeich F, Beyreuther K, Zenk MH (1988) The cDNA clone for strictosidine synthase from Rauvolfia serpentina DNA sequence determination and expression in Escherichia coli. FEBS Lett 237(1–2):40–44

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Kroon PA, Quideau S, Treutter D (2008) Plant phenolics—secondary metabolites with diverse functions. Rec Adv Polyphen Res 1:1–35

    Article  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(8):976–984

    Article  CAS  PubMed  Google Scholar 

  • Lee WL, Shiau JY, Shyur LF (2012) Taxol, camptothecin and beyond for cancer therapy. Adv Bot Res 62:133–178

    Article  CAS  Google Scholar 

  • Lee EJ, Hagel JM, Facchini PJ (2013) Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. Front Plant Sci 4:182–188

    PubMed  PubMed Central  Google Scholar 

  • Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng CA Meyer. BMC Genomics 14:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Li D, Shao F, Lu S (2015) Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genomics 16:200–220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liscombe DK, O’Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72(16):1969–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hou J, Jiang C, Li G, Lu H, Meng F, Shi L (2015a) Deep sequencing of the Scutellaria baicalensis Georgi transcriptome reveals flavonoid biosynthetic profiling and organ-specific gene expression. PLoS One 10(8), e0136397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015b) MYB Transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8(5):689–708

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Martinez F, Del Valle C, Orte C, Miro M (2001) Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J Chromatogr A 922(1–2):359–363

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Zhu Y, Song J, Xu L, Sun C, Zhang X, Xu Y, He L, Sun X, Xu H, Wang B, Li X, Li C, Liu J, Chen S (2014) Transcriptional data mining of Salvia miltiorrhiza in response to methyl jasmonate to examine the mechanism of bioactive compound biosynthesis and regulation. Physiol Plant 152(2):241–255

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX, Guo J, Huang LQ (2015) The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20:16235–16254

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Esteso MJ, Martinez-Marquez A, Selles-Marchart S, Morante-Carriel JA, Bru-Martinez R (2015) The role of proteomics in progressing insights into plant secondary metabolism. Front Plant Sci 6:504–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    PubMed  PubMed Central  Google Scholar 

  • Millgate AG, Pogson BJ, Wilson IW, Kutchan TM, Zenk MH, Gerlach WL, Fist AJ, Larkin PJ (2004) Analgesia: morphine-pathway block in top1 poppies. Nature 431(7007):413–414

    Article  CAS  PubMed  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19(5):470–474

    Article  CAS  PubMed  Google Scholar 

  • Namdeo A (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79

    CAS  Google Scholar 

  • O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23(4):532–547

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440

    Article  CAS  PubMed  Google Scholar 

  • Ow YY, Stupans I (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Curr Drug Metab 4(3):241–248

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLos One 7(8), e43038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Q, Mustafa N, Tang K, Choi Y, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15(2):221–250

    Google Scholar 

  • Pathak S, Lakhwani D, Gupta P, Mishra BK, Shukla S, Asif MH, Trivedi PK (2013) Comparative transcriptome analysis using high papaverine mutant of Papaver somniferum reveals pathway and uncharacterized steps of papaverine biosynthesis. PLos One 8(5), e65622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50(3):586–621

    Article  CAS  Google Scholar 

  • Roberts MF, Strack D, Wink M (2010) Biosynthesis of alkaloids and betalains. In: Annual plant reviews, vol 40: Biochemistry of plant secondary metabolism, Second Edition. Wiley, Blackwell, pp 20–91

    Google Scholar 

  • Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, Chimen M, Sawtell AK, Hamza B, Willson J, Walmsley SR, Anderson SR, Coles MC, Farrow SN, Solari R, Jones S, Prince LR, Irimia D, Rainger GE, Kadirkamanathan V, Whyte MK, Renshaw SA (2014) A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Trans Med 26(6):29

    Google Scholar 

  • Ryder TB, Cramer CL, Bell JN, Robbins MP, Dixon RA, Lamb CJ (1984) Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Proc Natl Acad Sci U S A 81(18):5724–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34

    Article  CAS  PubMed  Google Scholar 

  • Salim V, Yu F, Altarejos J, De Luca V (2013) Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76(5):754–765

    Article  CAS  PubMed  Google Scholar 

  • Schluttenhofer C, Pattanaik S, Patra B, Yuan L (2014) Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genomics 15:502–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitz R (1985) Friedrich Wilhelm Sertürner and the discovery of morphine. Pharm Hist 27(2):61–74

    CAS  PubMed  Google Scholar 

  • Schramek N, Huber C, Schmidt S, Dvorski SE, Kmispel N, Ostrozhenkova E, Pena-Rodriguez LM, Cusido RM, Wischmann G, Eisenreich W (2014) Biosynthesis of ginsenosides in field-grown Panax ginseng. JSM Biotechnol Bioeng 2(1):1033

    Google Scholar 

  • Sharoni Y, Stahl W, Danilenko M, Levy J (2004) Anticancer activity of carotenoids: from human studies to cellular processes and gene regulation. In: Carotenoids in health and disease. CRC Press, Boca Raton, pp 165–196

    Google Scholar 

  • Shi SG, Yang M, Zhang M, Wang P, Kang YX, Liu JJ (2014) Genome-wide transcriptome analysis of genes involved in flavonoid biosynthesis between red and white strains of Magnolia sprengeri pamp. BMC Genomics 15:706–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla AK, Shasany AK, Gupta MM, Khanuja SPS (2006) Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J Exp Bot 57(14):3921–3932

    Article  CAS  PubMed  Google Scholar 

  • Song WO, Chun OK (2008) Tea is the major source of flavan-3-ol and flavonol in the U.S. diet. J Nutr 138(8):1543S–1547S

    CAS  PubMed  Google Scholar 

  • Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O’Connor SE (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22(3):336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart MJ, Steenkamp V (2000) The biochemistry and toxicity of atractyloside: a review. Ther Drug Monit 22:641–649

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11(5):887–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhao SJ, Liang YL, Cao HJ (2013) Regulation and differential expression of protopanaxadiol synthase in Asian and American ginseng ginsenoside biosynthesis by RNA interferences. Plant Growth Regul 71(3):207–217

    Article  CAS  Google Scholar 

  • Sun H, Liu Y, Gai Y, Geng J, Chen L, Liu H, Kang L, Tian Y, Li Y (2015) De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. BMC Genomics 16:652–669

    Google Scholar 

  • Sung YC, Lin CP, Chen JC (2014) Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol 63(5):1159–1167

    Article  CAS  Google Scholar 

  • Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769(2):139–148

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Nakabayashi R, Ogata Y, Sakurai N, Tokimatsu T, Goto S, Suzuki M, Jasinski M, Martinoia E, Otagaki S, Matsumoto S, Saito K, Shiratake K (2015) Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. Plant Physiol 168(1):47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2006) Secondary metabolites and plant defense. In: Plant physiology, 5th edn. Sinauer Associates, Sunderland, pp 369–400

    Google Scholar 

  • Takahashi H, Chen MC, Pham H, Angst E, King JC, Park J, Brovman EY, Ishiguro H, Harris DM, Reber HA, Hines OJ, Gukovskaya AS, Go VL, Eibl G (2011) Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim Biophys Acta 1813(8):1465–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278(34):31647–31656

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Rien I, Steber CM (2005) Gibberellin metabolism and signaling. Vitam Horm 72:289–338

    Article  CAS  PubMed  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schroder J, Schroder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38(6):610–618

    Article  CAS  PubMed  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A (2013) CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 54(5):673–685

    Article  PubMed  CAS  Google Scholar 

  • Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Bossche RV, Miettinen K, Espoz J, Purnama PC, Kellner F, Seppanen-Laakso T, O’Connor SE, Rischer H, Memelink J, Goossens A (2015) The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc Natl Acad Sci Biol 112(26):8130–8135

    Article  CAS  Google Scholar 

  • Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M (2012) Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 12:130–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12), e132

    Article  CAS  Google Scholar 

  • Verma M, Ghangal R, Sharma R, Sinha AK, Jain M (2014) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLos One 9(7), e103583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wei Y, Fan Y, Liu Q, Wei W, Yang C, Zhang L, Zhao G, Yue J, Yan X, Zhou Z (2015) Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 29:97–105

    Article  PubMed  CAS  Google Scholar 

  • Weiss D (2000) Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol Plant 110(2):152–157

    Article  CAS  Google Scholar 

  • Wellmann F, Lukacin R, Moriguchi T, Britsch L, Schiltz E, Matern U (2002) Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur J Biochem 269(16):4134–4142

    Article  CAS  PubMed  Google Scholar 

  • Wiese W, Vornam B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26(2):667–677

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon CP, Facchini PJ (2012) Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing. Plant J 69(6):1052–1063

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ, Spencer JP (2012) Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 52(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagne-Penix I, Haslam TM, Kim Y-B, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro D-K, Martin VJJ, Facchini PJ, Sensen CW (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166(3):122–134

    Article  CAS  PubMed  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299(5605):396–399

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Wang J, Zhao Y, Shen L, Jiang X, Xie ZG, Liang N, Zhang L, Chen ZH (2010) Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol 130(2):231–236

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y, Fang X, Liu R, Wang L, Chen X, Yang C (2013) Correction: transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One 8(12), e80464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang D, Du X, Yang Z, Liang Z, Guo Z, Liu Y (2014) Transcriptomics, proteomics, and metabolomics to reveal mechanisms underlying plant secondary metabolism. Eng Life Sci 14(5):456–466

    Article  CAS  Google Scholar 

  • Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pe ME, Benvenuto E, Delledonne M, Pezzotti M (2010) Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol 154(3):1439–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lu J (2012) Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 13:13621–13666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GH, Ma CH, Zhang JJ, Chen JW, Tang QY, He MH, Xu XZ, Jiang NH, Yang SC (2015) Transcriptome analysis of Panax vietnamensis var. fuscidicus discovers putative ocotillol-type ginsenosides biosynthesis genes and genetic markers. BMC Genomics 16(1):159

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J (2014) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33:393–400

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Xu T, Liang Y, Zhao S, Ren L, Wang Q, Dou B (2015) Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference. Plant Cell Rep 34(8):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9(17):24–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59(1):735–769

    Article  CAS  PubMed  Google Scholar 

  • Zulak KG, Liscombe DK, Ashihara H, Facchini PJ (2006) Alkaloids. In: Crozier A (ed) Plant secondary metabolites: occurrence, structure and role in the human diet. Wiley, Blackwell, pp 102–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie-Fen Shyur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chung, HH., Sung, YC., Shyur, LF. (2016). Deciphering the Biosynthetic Pathways of Bioactive Compounds In Planta Using Omics Approaches. In: Tsay, HS., Shyur, LF., Agrawal, D., Wu, YC., Wang, SY. (eds) Medicinal Plants - Recent Advances in Research and Development. Springer, Singapore. https://doi.org/10.1007/978-981-10-1085-9_5

Download citation

Publish with us

Policies and ethics