Skip to main content

A Construction Method for Discrete Constant Negative Gaussian Curvature Surfaces

  • Conference paper
  • First Online:
Mathematical Progress in Expressive Image Synthesis III

Part of the book series: Mathematics for Industry ((MFI,volume 24))

  • 395 Accesses

Abstract

This article is an application of the author’s paper (Kobayashi, Nonlinear d’Alembert formula for discrete pseudospherical surfaces, 2015, [9]) about a construction method for discrete constant negative Gaussian curvature surfaces, the nonlinear d’Alembert formula. The heart of this formula is the Birkhoff decomposition, and we give a simple algorithm for the Birkhoff decomposition in Lemma 3.1. As an application, we draw figures of discrete constant negative Gaussian curvature surfaces given by this method (Figs. 1 and 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A constant negative Gaussian curvature surface is sometimes called a pseudospherical surface , thus we use “PS” for the shortened name.

References

  1. A. Bobenko, U. Pinkall, Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Differ. Geom. 43(3), 527–611 (1996)

    MathSciNet  MATH  Google Scholar 

  2. A. Bobenko, U. Pinkall, Discretization of surfaces and integrable systems. Discrete integrable geometry and physics (Vienna, 1996). Oxf. Lect. Ser. Math. Appl. 16, 3–58 (1999)

    Google Scholar 

  3. D. Brander, Loop group decompositions in almost split real forms and applications to soliton theory and geometry. J. Geom. Phys. 58(12), 1792–1800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Brander, J. Inoguchi, S.-P. Kobayashi, Constant Gaussian curvature surfaces in the 3-sphere via loop groups. Pac. J. Math. 269(2), 281–303 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.F. Dorfmeister, T. Ivey, I. Sterling, Symmetric pseudospherical surfaces. I. General theory. Results Math. 56(1–4), 3–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. I.Ts. Gohberg, The factorization problem in normed rings, functions of isometric and symmetric operators, and singular integral equations. Russ. Math. Surv. 19, 63–114 (1964)

    Google Scholar 

  7. R. Hirota, Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Jpn. 43(6), 2079–2086 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Discrete mKdV and discrete sine-Gordon flows on discrete space curves. J. Phys. A 47(23), 26 (2014) (235022)

    Google Scholar 

  9. S.-P. Kobayashi, Nonlinear d’Alembert formula for discrete pseudospherical surfaces. Preprint arXiv:1505.07189 (2015)

  10. I.M. Kričever, An analogue of the d’Alembert formula for the equations of a principal chiral field and the sine-Gordon equation. Dokl. Akad. Nauk SSSR 253(2), 288–292 (1980)

    MathSciNet  Google Scholar 

  11. M. Melko, I. Sterling, Application of soliton theory to the construction of pseudospherical surfaces in \({\bf R}^3\). Ann. Glob. Anal. Geom. 11(1), 65–107 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Sym, Soliton surfaces and their applications (soliton geometry from spectral problems). Geometric aspects of the Einstein equations and integrable systems (Scheveningen, 1984). Lect. Notes Phys. 239, 154–231 (1985)

    Article  MathSciNet  Google Scholar 

  13. M. Toda, Weierstrass-type representation of weakly regular pseudospherical surfaces in Euclidean space. Balk. J. Geom. Appl. 7(2), 87–136 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank an anonymous referee for helpful comments. The author is partially supported by Kakenhi 26400059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimpei Kobayashi .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we give a definition of the loop group of \(\mathrm{SU}_2\) and its subgroups \(\varLambda ^{\pm } \mathrm{SU}_2\). Moreover theorem of the Birkhoff decomposition will be stated.

It is easy to see that F defined in (3) together with the condition \(F|_{(x_*, y_*)} = {\text {Id}}\) is an element in the twisted \(\mathrm{SU}_2\) -loop group :

$$\begin{aligned} \varLambda \mathrm{SU}_2:= \left\{ g : \mathbb R^{\times } \cup S^1 \rightarrow \mathrm{SL}_2 \mathbb C\;\Big |\; \begin{array}{l} g\ \text {is smooth}, g(\lambda ) = \left( \overline{g(\bar{\lambda })}^{-1} \right) ^{T} \\ \;\text {and}\ \sigma g(\lambda ) = g(-\lambda ) \end{array}\right\} , \end{aligned}$$
(20)

where \(\mathbb R^{\times } =\mathbb R{\setminus }\{0\}\), \(\sigma X = {\text {Ad}}(\sigma _3) X = \sigma _3 X \sigma _3^{-1}, (X \in \mathrm{SL}_2 \mathbb C)\) is an involution on \(\mathrm{SL}_2 \mathbb C\). In order to make the above group a Banach Lie group, we restrict the occurring matrix coefficients to the Wiener algebra \(\mathscr {A} =\{ f(\lambda )= \sum _{n \in \mathbb Z} f_n \lambda ^n{:}\,S^1 \rightarrow \mathbb C \;|\; \sum _{n \in \mathbb Z} |f_n| < \infty \}\), where we denote the Fourier expansion of f on \(S^1\) by \(f(\lambda )=\sum _{n \in \mathbb Z} f_n \lambda ^n\). Then the Wiener algebra is a Banach algebra relative to the norm \(\Vert f\Vert = \sum |f_n|\) and the loop group \(\varLambda \mathrm{SU}_2\) is a Banach Lie group, [6].

Let \(\mathbb D^{+}\) and \(\mathbb D^{-}\) be the interior of the unit disk in the complex plane and the union of the exterior of the unit disk in the complex plane and infinity, respectively. We first define two subgroups of \(\varLambda \mathrm{SU}_2\):

$$\begin{aligned} \varLambda ^+ \mathrm{SU}_2=\left\{ g \in \varLambda \mathrm{SU}_2\;|\;\text{ g } \text{ can } \text{ be } \text{ analytically } \text{ extended } \text{ to } \mathbb D^+ \right\} , \end{aligned}$$
(21)
$$\begin{aligned} \varLambda ^- \mathrm{SU}_2=\left\{ g \in \varLambda \mathrm{SU}_2\;|\;\text{ g } \text{ can } \text{ analytically } \text{ be } \text{ extended } \text{ to } \mathbb D^{-} \right\} . \end{aligned}$$
(22)

Then \(\varLambda ^+_{*} \mathrm{SU}_2\) and \(\varLambda ^-_{*} \mathrm{SU}_2\) denote subgroups of \(\varLambda ^+ \mathrm{SU}_2\) and \(\varLambda ^- \mathrm{SU}_2\) normalized at \(\lambda =0\) and \(\lambda = \infty \), respectively:

$$\begin{aligned} \varLambda ^+_{*} \mathrm{SU}_2=\left\{ g \in \varLambda ^+ \mathrm{SU}_2\;|\; g(\lambda =0) = {\text {Id}}\right\} ,\\ \varLambda ^-_{*} \mathrm{SU}_2=\left\{ g \in \varLambda ^- \mathrm{SU}_2\;|\; g(\lambda =\infty ) = {\text {Id}}\right\} . \end{aligned}$$

The following decomposition theorem is fundamental.

Theorem 3.3

(Birkhoff decomposition, [3, 6]) The multiplication maps

$$\begin{aligned} \varLambda ^+_{*} \mathrm{SU}_2\times \varLambda ^- \mathrm{SU}_2\rightarrow \varLambda \mathrm{SU}_2\;\;\text{ and }\;\; \varLambda ^-_{*} \mathrm{SU}_2\times \varLambda ^+ \mathrm{SU}_2\rightarrow \varLambda \mathrm{SU}_2\end{aligned}$$

are diffeomorphisms onto \(\varLambda \mathrm{SU}_2\), respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kobayashi, S. (2016). A Construction Method for Discrete Constant Negative Gaussian Curvature Surfaces. In: Dobashi, Y., Ochiai, H. (eds) Mathematical Progress in Expressive Image Synthesis III. Mathematics for Industry, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-10-1076-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1076-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1075-0

  • Online ISBN: 978-981-10-1076-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics