Skip to main content

Archean Continental Crustal Accretion and Banded Iron Formations, Southeastern North China Craton

  • Chapter
  • First Online:
Main Tectonic Events and Metallogeny of the North China Craton

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 2016 Accesses

Abstract

The Huoqiu Complex (HQC) in the southeastern margin of the North China Craton (NCC) is dominated by Neoarchean TTG gneisses, amphibolites and voluminous metasediments. Geochemical characteristics of TTG gneisses such as high Sr/Y and (La/Yb)N with steep REE patterns and trace element modeling suggest that they are generated by partial melting of hydrous meta-basalts (amphibolites) at the base of a thickened mafic continental crust, leaving a rutile-bearing eclogite residue. LA-MC-ICPMS U–Pb age data from magmatic zircon grains show protolith emplacement ages of 2.76–2.71 Ga. Hf isotopic compositions of zircon grains from the amphibolite and TTG gneiss show ε Hf(t) values of 2.4–15.5 and −3.0 to 1.5, respectively. The t DM2(Hf) model ages of the TTG gneisses range from 2.87 to 3.14 Ga, and are identical to the t DM1(Hf) ages of amphibolites (2.84–3.16 Ga) within analytical uncertainty, refining that the TTG gneisses formed by partial melting of amphibolite, and attest to large-scale remelting of the Mesoarchean continental rocks during early Neoarchean. The NCC represents one of only a few cratonic nuclei with a geological history extending back to the Eoarchean. However, extensive ca. 2.5 Ga crustal reworking has destroyed a considerable portion of the pre-existing crustal record, hindering the investigation of tectonothermal evolution prior to 2.5 Ga. The HQC represents rare material that survived the ca. 2.5 Ga tectonothermal events relatively intact, thus preserving valuable information on prior crustal growth. In situ detrital zircon U–Pb dating and Hf isotope analyses were conducted on three schists from three drilling holes cutting cross the basement of the HQC in order to decipher the nature (such as episodic vs. continuous, juvenile vs. reworked) and tectonic setting of continental crust formation and preservation, and to place the results into a broader geodynamic context. In combination with published data, the concordant age spectra of all detrital zircons (n = 204) yield 207Pb/206Pb ages of 2343–3997 Ma that cluster into two principal age populations with peaks at 3015 and 2755 Ma. The ca. 3.01 and 2.75 Ga zircons with positive ε Hf(t) values plot close to the depleted mantle evolutional line and their U–Pb ages are similar to or only slightly younger than the tDM1 model ages, hence indicating at least two predominant episodes of juvenile continental crustal accretions (3.01 and 2.75 Ga). The older episode finds only a minor correspondence in other cratons, suggesting little juvenile crustal growth occurred globally at a time of subdued mantle-derived magmatism. By contrast, the younger episode is coincident with a global rise in superplume activity in the Neoarchean. According to the geochemical and geochronological data, the 3.01 Ga juvenile crust was likely generated in an island-arc subduction system, whereas the 2.75 Ga crustal rocks were probably formed during magmatic underplating and subsequent partial melting of lower crustal mafic rocks. Consequently, they record a tectonic transition from a compressive to an extensional setting on the southeastern margin of the NCC between 3.01 and 2.75 Ga. This sequence of the events heralds a shift, from a mixture of net crustal growth and crustal reworking during multiple short-lived magmatic pulses, to fragmentation and dispersal of the early continental nucleus within 250 Ma. The Huoqiu iron deposits with a typical banded iron formation (BIF) are hosted by Precambrian high-grade metamorphic rocks, mostly occurring as metasedimentary rocks. From three BIF samples 88 detrital zircons have been collected, they display clear oscillatory zoning, high Th/U ratio, and low to variable luminescence, indicating magmatic origin. There are two peaks of 2753 Ma and 2970 Ma in concordant 207Pb/206Pb ages distribution plot, which is well consistent with the protolith ages of regional wall rocks (e.g., TTG gneiss and amphibolite) in this region. These appearances in association with the relatively good linear correlations between Al2O3 and TiO2 for BIF and their wall rocks, suggest that at least minor terrigenous clastic sediments contributed to BIF deposition, which thus constrained the upper limited age of BIF deposition at 2.75 Ga. In addition, no detrital zircons record recently reported 2.71 Ga magmatic event in this region and neighboring blocks, probably constrained the lower limited age of BIF deposition at 2.71 Ga. The flysch rhythmic structure occurrence in BIF-bearing strata, abundant carbonate minerals such as primary breunnerite association with magnetite, and no volcanic record present within BIF ore body or adjacent rocks inferred that the Huoqiu BIF deposited in continental marginal sea or back-arc basin environment with little contributions from submarine volcanic hydrothermal fluids, thus belonged to Superior-type. They show similar REE patterns to seawater, however, the positive Eu anomalies and reduced Y/Ho ratios relative to seawater indicates a possible mixture of hydrothermal fluids. Thus, their material sources were dominated by seawater, with minor contributions from the volcanic hydrothermal fluids and terrigenous sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allègre, C. J., & Rousseau, D. (1984). The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth and Planetary Science Letters, 67, 19–34.

    Article  Google Scholar 

  • Armstrong, R. L. (1981). Radiogenic isotopes: The case for crustal recycling on a steady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society of London Series A, 301, 443–472.

    Article  Google Scholar 

  • Arndt, N., & Davaille, A. (2013). Episodic Earth evolution. Tectonophysics, 609, 661–674.

    Article  Google Scholar 

  • Barth, M. G., Foley, S. F., & Horn, I. (2002). Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research, 113(3–4), 323–340.

    Article  Google Scholar 

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1–2), 37–55.

    Article  Google Scholar 

  • Bau, M., & Dulski, P. (1999). Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155, 77–90.

    Google Scholar 

  • Bekker, A., Slack, J. F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K. O., et al. (2010). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3), 467–508.

    Article  Google Scholar 

  • Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O’Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos, 119, 457–466.

    Article  Google Scholar 

  • Beukes, N. J. (1983). Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In A. F. Trendall & R. C. Morris (Eds.), Iron formations: Facts and problems (pp. 131–209). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • BGMRA (Bureau of Geology Mineral Resources of Anhui). (1987). The regional geology of Anhui province (pp. 548–558). Beijing: Geological Publishing House (in Chinese with detailed English illustrations).

    Google Scholar 

  • BGMRA (Bureau of Geology Mineral Resources of Anhui). (1997). Rock Strata in Anhui Province (pp. 1–271). Wuhan: China University of Geosciences Press (in Chinese with detailed English illustrations).

    Google Scholar 

  • BGMRH (Bureau of Geology Mineral Resources of Henan) (1989) The regional geology of Anhui Province (pp. 5–94). Beijing: Geological Publishing House (in Chinese with detailed English illustrations).

    Google Scholar 

  • Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M., & Whitehouse, M. J. (2004). Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 43–60.

    Article  Google Scholar 

  • Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2013). The continental record and the generation of continental crust. Geological Society of America Bulletin, 125(1–2), 14–32.

    Article  Google Scholar 

  • Cloud, P. (1973). Paleoecological significance of the banded iron formation. Economic Geology, 68, 1135–1143.

    Article  Google Scholar 

  • Condie, K. C. (1986). Geochemistry and tectonic setting of early Proterozoic supracrustal rocks in the southwestern United States. The Journal of Geology, 94, 845–864.

    Article  Google Scholar 

  • Condie, K. C. (2000). Episodic continental growth models: Afterthoughts and extensions. Tectonophysics, 322(1–2), 153–162.

    Article  Google Scholar 

  • Condie, K. C. (2005). TTG and adakites: Are they both slab melts? Lithos, 80(1–4), 33–44.

    Article  Google Scholar 

  • Condie, K. C., & Aster, R. C. (2010). Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research, 180(3–4), 227–236.

    Article  Google Scholar 

  • Condie, K. C., Bickford, M. E., Aster, R. C., Belousova, E., & Scholl, D. W. (2011). Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geological Society of America Bulletin, 123(5–6), 951–957.

    Article  Google Scholar 

  • Condie, K. C., & Kröner, A. (2013). The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23(2), 394–402.

    Article  Google Scholar 

  • Dhuime, B., Hawkesworth, C. J., Cawood, P. A., & Storey, C. D. (2012). A change in the geodynamics of continental growth 3 billion years ago. Science, 335(6074), 1334–1336.

    Article  Google Scholar 

  • Diwu, C., Sun, Y., Wilde, S. A., Wang, H. L., Dong, Z. C., Zhang, H., et al. (2013). New evidence for similar to 4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research, 23(4), 1484–1490.

    Article  Google Scholar 

  • Diwu, C. R., Sun, Y., Ling, C. L., & Wang, H. L. (2010). LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin, 55, 2557–2571.

    Article  Google Scholar 

  • Douville, E., Bienvenu, P., Charlou, J. L., Donval, J. P., Fouquet, Y., Appriou, P., et al. (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63, 627–643.

    Article  Google Scholar 

  • Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C. F., Donval, J. P., et al. (2002). The rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 184, 37–48.

    Article  Google Scholar 

  • Drummond, M. S., & Defant, M. J. (1990). A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research, 95, 21503–21521.

    Article  Google Scholar 

  • Faure, G. (1977). Smith and Wyllie Intermediate Geology Series. Principles of isotope geology (475 p.). New York, NY, United States: Wiley.

    Google Scholar 

  • Foley, S. F. (2008). Rejuvenation and erosion of the cratonic lithosphere. Nature Geoscience, 1(8), 503–510.

    Article  Google Scholar 

  • Foley, S. F., Buhre, S., & Jacob, D. E. (2003). Evolution of the Archaean crust by delamination and shallow subduction. Nature, 421(6920), 249–252.

    Google Scholar 

  • Foley, S. F., Tiepolo, M., & Vannucci, R. (2002). Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891), 837–840.

    Article  Google Scholar 

  • Gastil, G. (1960). The distribution of mineral dates in time and space. American Journal of Science, 258, 1–35.

    Article  Google Scholar 

  • Geng, Y. S., Du, L., & Ren, L. (2012). Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2–3), 517–529.

    Article  Google Scholar 

  • Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O’Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1), 133–147.

    Article  Google Scholar 

  • Goodwin, A. M. (1996). Principles of Precambrian geology (327 pp.). London: Academic Press.

    Google Scholar 

  • Gross, G. A. (1980). A classification of iron-formation based on depositional environments. Canadian Mineralogist, 18, 215–222.

    Google Scholar 

  • Gross, G. A. (1983). Tectonic systems and the deposition of iron-formation. Precambrian Research, 20, 171–187.

    Article  Google Scholar 

  • Gross, G. A. (1993). Industrial and genetic models for iron ore in iron-formations. In R. V. Kirkham, W. D. Sinclair, R. I. Thorpe, & J. M. Duke (Eds.), Mineral deposit modeling (pp. 151–170). Geological Association of Canada, Special Paper 40.

    Google Scholar 

  • Hanchar, J. M., & Rudnick, R. L. (1995). Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos, 36, 289–303.

    Article  Google Scholar 

  • Harmsworth, R. A., Kneeshaw, M., Morris, R. C., Robinson, C. J., & Shrivastava, P. K. (1990). BIF derived iron ores of the Hamersley Province. In: F. E. Hughes (Ed.), Geology of the mineral deposits of Australia and Papua New Guinea (Vol. 14, pp. 617–642). Melbourne (Aust. Inst. Min. Metall. Monogr.).

    Google Scholar 

  • Hawkesworth, C. J., Cawood, P., & Dhuime, B. (2013). Continental growth and the crustal record. Tectonophysics, 609, 651–660.

    Article  Google Scholar 

  • Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., Cawood, P. A., Kemp, A. I. S., & Storey, C. D. (2010). The generation and evolution of the continental crust. Journal of the Geological Society, 167(2), 229–248.

    Article  Google Scholar 

  • Hawkesworth, C. J., & Kemp, A. I. S. (2006). Evolution of the continental crust. Nature, 443(7113), 811–817.

    Article  Google Scholar 

  • Heimann, A., Johnson, C. M., Beard, B. L., Valley, J. W., Roden, E. E., Spicuzza, M. J., & Beukes, N. J. (2010). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294(1–2), 8–18.

    Article  Google Scholar 

  • Hergt, J. M., Peate, D. W., & Hawkesworth, C. J. (1991). The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth and Planetary Science Letters, 105, 134–148.

    Article  Google Scholar 

  • Hoffmann, J. E., Münker, C., Næraa, T., Rosing, M. T., Herwartz, D., Garbe-Schönberg, D., et al. (2011). Mechanisms of Archean crust formation inferred from high precision HFSE systematics in TTG. Geochimica et Cosmochimica Acta, 75, 4157–4178.

    Article  Google Scholar 

  • Holland, H. D. (1973). The oceans: A possible source of iron in iron-formation. Economic Geology, 68, 1169–1172.

    Article  Google Scholar 

  • Huang, H., Polat, A., & Fryer, B. J. (2013a). Origin of Archean tonalite–trondhjemite–granodiorite (TTG) suites and granites in the Fiskenæsset region, southern West Greenland: Implications for continental growth. Gondwana Research, 23(2), 452–470.

    Google Scholar 

  • Huang, H., Zhang, L. C., Liu, X. F., Li, H. Z., & Liu, L. (2013b). Geological and geochemical charateristics of the Lee Laozhuang iron mine in Huoqiu iron deposti: Implications for sedimentary environment. Acta Petrologica Sinica, 29, 2593–2605 (in Chinese with English abstract).

    Google Scholar 

  • Hurley, P. M., & Rand, J. R. (1969). Predrift continental nuclei. Science, 164, 1229–1242.

    Article  Google Scholar 

  • Huston, D. L., & Logan, G. A. (2004). Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth and Planetary Science Letters, 220, 41–55.

    Article  Google Scholar 

  • Ilyin, A. V. (2009). Neoproterozoic banded iron formations. Lithology and Mineral Resources, 44(1), 87–95.

    Article  Google Scholar 

  • Jahn, B. M., Auvray, B., Shen, Q. H., Liu, D. Y., Zhang, Z. Q., Dong, Y. J., et al. (1988). Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38(4), 381–403.

    Article  Google Scholar 

  • Jahn, B. M., Liu, D. Y., Wan, Y. S., Song, B., & Wu, J. S. (2008). Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3), 232–269.

    Article  Google Scholar 

  • Jiang, N., Guo, J., Zhai, M., & Zhang, S. (2010). ∼2.7 Ga crust growth in the North China Craton. Precambrian Research, 179(1–4), 37–49.

    Article  Google Scholar 

  • Jiao, Y. L., Wang, Y., Yao, Y., Tong, L. X. (2013). Can partial melting of the hydrous intermediate-basic lower continental crust generate C-type adakites?—Comment on Zhang et al. (2012). Geological Journal of China Universities, 19(2), 373–380 (in Chinese with English abstract).

    Google Scholar 

  • Johnson, C. M., Beard, B. L., Beukes, N. J., Klein, C., & O’Leary, J. M. (2003). Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology, 144(5), 523–547.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., & Roden, E. E. (2008). The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Annual Review of Earth Planetary Science, 36, 457–493.

    Article  Google Scholar 

  • Johnson, C. M., Ludois, J. M., Beard, B. L., Beukes, N. J., & Heimann, A. (2013). Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis? Geology, 41(11), 1147–1150.

    Article  Google Scholar 

  • Kamber, B. S. (2010). Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry. Chemical Geology, 274, 19–28.

    Article  Google Scholar 

  • Kamber, B. S. (2015). The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Research, 258, 48–82.

    Article  Google Scholar 

  • Kato, Y., Kawakami, T., Kano, T., Kunugiza, K., & Swamy, N. S. (1996). Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India. Journal of Southeast Asian Earth Sciences, 14, 161–164.

    Article  Google Scholar 

  • Klein, C. (2005). Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10), 1473–1499.

    Article  Google Scholar 

  • Klein, C., & Beukes, N. J. (1992). Time distribution, stratigraphy, and sedimentology, and sedimentologic setting, and geochemistry of Precambrian iron formation. In J. W. Schopf & C. Klein (Eds.), The proterozoic biosphere: A multidisciplinary study (pp. 139–146). New York: Cambridge University Press.

    Google Scholar 

  • Klein, C., & Beukes, N. J. (1993). Sedimentology and geochemistry of the glaciogenic late proterozoic rapitan iron-formation in canada. Economic Geology and the Bulletin of the Society of Economic Geologists, 88(3), 542–565.

    Article  Google Scholar 

  • Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(1–2), 277–279.

    Google Scholar 

  • Li, D. L. (2003). Research of tectonics and ore-controlling factors in the iron ore in the Waitou Mountains, Liaoning. Geological Prospectives Review, 18(2), 882–894. (in Chinese with English abstract).

    Google Scholar 

  • Li, H. Y., & Zhao, X. D. (1999). Study on Anshan type ironmine geological structure. Precambrian Research Progress, 22(3), 222–229. (in Chinese with English abstract).

    Google Scholar 

  • Li, W., Beard, B. L., & Johnson, C. M. (2015). Biologically recycled continental iron is a major component in banded iron formations. Proceedings of the National Academy of Sciences, 112(27), 8193–8198.

    Article  Google Scholar 

  • Liu, C. H., Zhao, G., Sun, M., Zhang, J., & Yin, C. (2012b). U–Pb geochronology and Hf isotope geochemistry of detrital zircons from the Zhongtiao Complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Research, 222–223(0), 159–172.

    Google Scholar 

  • Liu, C. H., Zhao, G., Sun, M., Zhang, J., Yin, C., & He, Y. (2012a). Detrital zircon U–Pb dating, Hf isotopes and whole-rock geochemistry from the Songshan Group in the Dengfeng Complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Research, 192–195(0), 1–15.

    Google Scholar 

  • Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S., & Shen, Q. H. (1992). Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4), 339–342.

    Article  Google Scholar 

  • Liu, D. Y., Wilde, S. A., Wan, Y., Wang, S., Valley, J. W., Kita, N., et al. (2009). Combined U–Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1–2), 140–154.

    Article  Google Scholar 

  • Liu, L., & Yang, X. Y. (2013). Geochemical characteristics of the Huoqiu BIF ore deposit in Anhui province and their metallogenic significance: Taking the Bantaizi and Zhouyoufang deposits as examples. Acta Petrologica Sinica, 29(7), 2551–2566. (in Chinese with English abstract).

    Google Scholar 

  • Liu, L., & Yang, X. (2015). Temporal, environmental and tectonic significance of the Huoqiu BIF, southeastern North China Craton: Geochemical and geochronological constraints. Precambrian Research, 261, 217–233.

    Article  Google Scholar 

  • Liu, L., Yang, X., Santosh, M., & Aulbach, S. (2015). Neoarchean to Paleoproterozoic continental growth in the southeastern margin of the North China Craton: Geochemical, zircon U–Pb and Hf isotope evidence from the Huoqiu complex. Gondwana Research, 28(3), 1002–1018.

    Article  Google Scholar 

  • Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635–643.

    Article  Google Scholar 

  • Martin, H. (1999). Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3), 411–429.

    Article  Google Scholar 

  • Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., & Champion, D. (2005). An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1–2), 1–24.

    Article  Google Scholar 

  • Mcdonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.

    Article  Google Scholar 

  • Moyen, J. F., & Martin, H. (2012). Forty years of TTG research. Lithos, 148, 312–336.

    Article  Google Scholar 

  • Moyen, J. F., Stevens, G. (2006). Experimental constraints on TTG petrogenesis: Implications for Archean Geodynamics. In K. Benn, J. C. Mareschal, & K. C. Condie (Eds.), AGU Geophysical Monograph Series: Vol. 164. Archean geodynamics and environments (pp. 149–175).

    Google Scholar 

  • Nagel, T. J., Hoffmann, J. E., & Münker, C. (2012). Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology, 40(4), 375–378.

    Article  Google Scholar 

  • No. 313 Geol. Team. (1991). A Report of the Regional 1:50000 Geological Survey in Huoqiu Iron Ore Field. Anhui Bureau of Geology and Mineral Resources, (in Chinese).

    Google Scholar 

  • No. 337 Geol. Team (1986) A report of 1:50000 Geological Survey of the Sanhejian-Yunheji, Qiaogou-Gaotangji and Jiangji-Liuji Regions. Anhui Bureau of Geology and Mineral Resources, (in Chinese).

    Google Scholar 

  • Nowell, G. M., Kempton, P. D., Noble, S. R., Fitton, J. G., Saunders, A. D., Mahoney, J. J., et al. (1998). High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149, 211–233.

    Article  Google Scholar 

  • Nozaki, Y., Zhang, J., & Amakawa, H. (1997). The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148, 329–34.

    Article  Google Scholar 

  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.Pearce, T.H., Gorman, B.E., & Birkett, T.C. (1975). The TiO2-K2O-P2O5 diagram: a method of discrimination between oceanic and non-oceanic basalts. Earth and Planetary Science Letters, 24, 419-426.

    Article  Google Scholar 

  • .Pearce, T.H, Gorman, B.E, & Birkett, T.C. (1975). The TiO2-K2O-P2O5 diagram: a method of discrimination between oceanic and non-oceanic basalts. Earth and Planetary Science Letters, 24, 419–426.

    Google Scholar 

  • Pearce, T. H., Gorman, B. E., & Birkett, T. C. (1977). The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 36, 121–132.

    Article  Google Scholar 

  • Peng, T., Wilde, S. A., Fan, W., & Peng, B. (2013). Late Neoarchean potassic high Ba–Sr granites in the Taishan granite–greenstone terrane: Petrogenesis and implications for continental crustal evolution. Chemical Geology, 344, 23–41.

    Article  Google Scholar 

  • Pin, C., & Paquette, J. L. (1997). A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the late Devonian Brévenne metavolcanics, Massif Central (France). Contributions to Mineralogy and Petrology, 129, 222–238.

    Article  Google Scholar 

  • Planavsky, N., Rouxel, O. J., Bekker, A., Hofmann, A., Little, C. T. S., & Lyons, T. W. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158–169.

    Article  Google Scholar 

  • Polat, A. (2012). Growth of Archean continental crust in oceanic island arcs. Geology, 40(4), 383–384.

    Article  Google Scholar 

  • Qi, R. Z. (1987). A discussion on the genesis of BIF of the Precambrian Huoqiu complex. Bulletin of Nanjing Institute of Geology and Mineral Resources, 8(1), 1–20. (in Chinese with English abstract).

    Google Scholar 

  • Qi, R. Z., & Yao, G. Y. (1982). The metamorphism of HQC. Bulletin of Nanjing Institute of Geology and Mineral Resources, 3(3), 30–46. (in Chinese with English abstract).

    Google Scholar 

  • Rapp, R. P., Shimizu, N., & Norman, M. D. (2003). Growth of early continental crust by partial melting of eclogite. Nature, 425(6958), 605–609.

    Article  Google Scholar 

  • Rapp, R. P., Shimizu, N., Norman, M. D., & Applegate, G. S. (1999). Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160(4), 335–356.

    Article  Google Scholar 

  • Rapp, R. P., & Watson, E. B. (1995). Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891–931.

    Article  Google Scholar 

  • Rapp, R. P., Watson, E. B., & Miller, C. F. (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1–4), 1–25.

    Article  Google Scholar 

  • Rouxel, O. J., Bekker, A., & Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307(5712), 1088–1091.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick (Ed.), Treatise on geochemistry (Vol. 3, pp. 1–64)., The Crust Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sang, B. L., Xing, F. M., & Chen, Y. Z. (1981). The Precambrian metamorphic iron ore characteristics and prospecting. Anhui Institute of Geological Science, 1, 10–20. (in Chinese with English abstract).

    Google Scholar 

  • Schmidt, K., Garbe-Schönberg, D., Koschinsky, A., Strauss, H., Jost, C. L., Klevenz, V., et al. (2011). Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithosphere. Chemical Geology, 280, 1–18.

    Article  Google Scholar 

  • Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M., & Seifert, R. (2007). Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology, 242, 1–21.

    Article  Google Scholar 

  • Shervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118.

    Article  Google Scholar 

  • Skjerlie, K. P., & Douce, A. E. P. (2002). The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1 center dot 0 to 3 center dot 2 GPa; implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43(2), 291–314.

    Article  Google Scholar 

  • Smithies, R. H. (2000). The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters, 182(1), 115–125.

    Article  Google Scholar 

  • Smithies, R. H., & Champion, D. C. (2000). The Archaean high-Mg diorite suite: Links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41(12), 1653–1671.

    Article  Google Scholar 

  • Song, B. A., Nutman, A. P., Liu, D. Y., & Wu, J. S. (1996). 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1–3), 79–94.

    Article  Google Scholar 

  • Spandler, C., Hermann, J., Arculus, R., & Mavrogenes, J. (2003). Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology, 146, 205–222.

    Article  Google Scholar 

  • Stein, M., & Hofmann, A. W. (1994). Mantle plumes and episodic crustal growth. Nature, 372, 63–68.

    Article  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313–345.

    Article  Google Scholar 

  • Sun, Y. B. (2007). Geological characteristics and metallogenic types of the Lilaozhuang iron-magnesite deposit in Huoqiu. Anhui Mineral Resources of Geology, 21(5), 532–537. (in Chinese with English abstract).

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (312 pp.). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Thurston, P. C., Kamber, B. S., & Whitehouse, M. (2012). Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes. Precambrian Research, 214–215, 227–257.

    Article  Google Scholar 

  • Trendall, A. F., & Blockley, J. G. (1970). The iron-formations of the Precambrian Hamersley Group, Western Australia. Geological Survey Western Australia Bulletin, 119, 366.

    Google Scholar 

  • Trendall, A. F., de Laeter, J. R., Nelson, D. R., & Mukhopadhyay, D. (1997). A precise zircon U-Pb age for the base of the BIF of the Mulaingiri Formation (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton. Journal of the Geological Society of India, 50, 161–170.

    Google Scholar 

  • Vavra, G., Schmidt, R., & Gebauer, D. (1999). Internal morphology, habit and U-Th–Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380–404.

    Article  Google Scholar 

  • Veevers, J. J., Saeed, A., Belousova, E. A., & Griffin, W. L. (2005). U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth Science Review, 68, 245–279.

    Article  Google Scholar 

  • Wan, T., & Zhu, H. (1996). The maximum sinisrtra strike-slip displacement and formation time of the Tan-Lu fault zone. Geological Journal of China Universities, 2, 14–27. (in Chinese with English abstract).

    Google Scholar 

  • Wan, Y. S., Dong, C., Wang, W., Xie, H., & Liu, D. (2010). Archean basement and a Paleoproterozoic Collision Orogen in the Huoqiu area at the southeastern margin of North China Craton: Evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta Geologica Sinica, 84(1), 91–104. (English Edition).

    Article  Google Scholar 

  • Wan, Y. S., Liu, D., Song, B., Wu, J., Yang, C., Zhang, Z., et al. (2005). Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences, 24(5), 563–575.

    Article  Google Scholar 

  • Wan, Y. S., Liu, D., Wang, S., Yang, E., Wang, W., Dong, C., et al. (2011a). ∼2.7 Ga Juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): Further evidence of an understated event from U–Pb dating and Hf isotopic composition of zircon. Precambrian Research, 186(1–4), 169–180.

    Google Scholar 

  • Wan, Y. S., Liu, D., Wang, W., Song, T., Kröner, A., Dong, C., et al. (2011b). Provenance of Meso to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton: An integrated study of U–Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry. Gondwana Research, 20(1), 219–242.

    Google Scholar 

  • Wan, Y. S., Liu, D. Y., Wu, J. S., Zhang, Z. Q., & Song, B. (1998). The origin of Mesoarchean granitic rocks from Anshan-Benxi area: Constraints of geochemistry and Nd isotopes. Acta Petrologica Sinica, 14, 278–288. (in Chinese with English abstract).

    Google Scholar 

  • Wang, A.-D., Liu, Y.-C., Gu, X.-F., Hou, Z.-H., & Song, B. (2012). Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications. Precambrian Research, 220–221, 65–79.

    Article  Google Scholar 

  • Wang, Q. Y., Zheng, J., Pan, Y., Dong, Y., Liao, F., Zhang, Y., et al. (2014). Archean crustal evolution in the southeastern North China Craton: New data from the Huoqiu complex. Precambrian Research, 255, Part 1(0), 294–315.

    Google Scholar 

  • Wang, X., Li, Z., Chen, B., Chen, X., Dong, S., & Zhang, Q. (2001). On Tan-Lu fault zone (pp. 15–59). Beijing: Geological Publishing House (in Chinese).

    Google Scholar 

  • Wang, Z. H., Wilde, S. A., Wang, K., & Yu, L. (2004). A MORB-arc basalt–adakite association in the 2.5 Ga Wutai greenstone belt: Late Archean magmatism and crustal growth in the North China Craton. Precambrian Research, 131(3–4), 323–343.

    Article  Google Scholar 

  • Wilde, S. A., Valley, J. W., Kita, N. T., Cavosie, A. J., & Liu, D. Y. (2008). SHRIMP U–Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. American Journal of Science, 308, 185–199.

    Article  Google Scholar 

  • Wu, F. Y., Zhang, Y. B., Yang, J. H., Xie, L. W., & Yang, Y. H. (2008). Zircon U–Pb and Hf isotopic constraints on the early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3–4), 339–362.

    Article  Google Scholar 

  • Wu, M. L., Zhao, G., Sun, M., Li, S., He, Y., & Bao, Z. (2013). Zircon U–Pb geochronology and Hf isotopes of major lithologies from the Yishui Terrane: Implications for the crustal evolution of the Eastern Block, North China Craton. Lithos, 170–171, 164–178.

    Article  Google Scholar 

  • Wu, Y. C. (1979). A report on Anhui BIF. Anhui Institute of Geological Science, 1, 1–8. (in Chinese with English abstract).

    Google Scholar 

  • Xia, Q.-X., Zheng, Y.-F., & Hu, Z. (2010). Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos, 114(3–4), 385–412.

    Article  Google Scholar 

  • Xia, Q.-X., Zheng, Y.-F., Yuan, H., & Wu, F.-Y. (2009). Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos, 112(3–4), 477–496.

    Article  Google Scholar 

  • Xiao, W. J., & Santosh, M. (2014). The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Research, 25, 1429–1444.

    Article  Google Scholar 

  • Xiong, X. L. (2006). Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11), 945–948.

    Article  Google Scholar 

  • Xiong, X. L., Adam, J., & Green, T. H. (2005). Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3–4), 339–359.

    Article  Google Scholar 

  • Xu, J. W., Zhu, G., Tong, W., Cui, K., & Liu, Q. (1987). Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134(4), 273–310.

    Article  Google Scholar 

  • Yang, X. Y., Liu, L., Lee, I., Wang, B., Du, Z., Wang, Q., et al. (2014). A review on the Huoqiu banded iron formation (BIF), southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geology Reviews, 63, 418–443.

    Article  Google Scholar 

  • Yang, X. Y., Wang, B. H., Du, Z. B., Wang, Q. C., Wang, Y. X., Tu, Z. B., et al. (2012). On the metamorphism of the HQC, formation ages and BIF forming mechanism of the Huoqiu iron deposit, South margin of the North China Craton. Acta Petrological Sinica, 28, 3476–3496. (in Chinese with English abstract).

    Google Scholar 

  • Ying, J. L., Wang, Y. D., Zhao, F. Y., Lin, X. L., Sang, B. L., Xin, F. M., et al. (1984). The geochronology study on Precambrian metamorphic rock from West Anhui. Geochimica, 2, 145–152. (in Chinese).

    Google Scholar 

  • Yoshiya, K., Sawaki, Y., Hirata, T., Maruyama, S., & Komiya, T. (2015). In-situ iron isotope analysis of pyrites in ~3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chemical Geology, 401, 126–139.

    Article  Google Scholar 

  • Zhai, M. G., & Windley, B. F. (1990). The Archaean and early Proterozoic banded iron formations of North China: Their characteristics, geotectonic relations, chemistry and implications for crustal growth. Precambrian Research, 48, 267–286.

    Article  Google Scholar 

  • Zhai, M. G., Windley, B. F., & Sills, J. D. (1990). Archaean gneisses, amphibolites and banded iron-formations from the Anshan area of Liaoning Province, NE China: Their geochemistry, metamorphism and petrogenesis. Precambrian Research, 46(3), 195–216.

    Article  Google Scholar 

  • Zhai, M. G. (2010). Tectonic evolution and metallogenesis of the North China Craton. Mineral Deposit, 29(1), 24–36. (in Chinese with English abstract).

    Google Scholar 

  • Zhai, M. G., & Santosh, M. (2013). Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24(1), 275–297.

    Article  Google Scholar 

  • Zhang, G. C. (2005). Geological characteristics and iron ore prospecting direction of the Anshan type iron deposits, in the upper part of the Yanglushan River, Sunan. Geological Prospecting Review, 20(Suppl.), 129–138 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, H.-F., Wang, J.-L., Zhou, D.-W., Yang, Y.-H., Zhang, G.-W., Santosh, M., et al. (2014). Hadean to Neoarchean episodic crustal growth: Detrital zircon records in Paleoproterozoic quartzites from the southern North China Craton. Precambrian Research, 254, 245–257.

    Article  Google Scholar 

  • Zhang, H. F., Zhai, M. G., Santosh, M., Diwu, C. R., & Li, S. R. (2011a). Geochronology and petrogenesis of Neoarchean potassic meta-granites from Huai’an Complex: Implications for the evolution of the North China Craton. Gondwana Research, 20(1), 82–105.

    Google Scholar 

  • Zhang, L. C., Zhai, M. G., Wan, Y. S., Guo, J. H., Dai, Y. P., Wang, C. L., et al. (2012b). Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrologica Sinica, 28(11), 3431–3445 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, L. C., Zhai, M. G., Zhang, X., Xiang, P., Dai, Y., Wang, C., et al. (2012a). Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating. Precambrian Research, 222–223(0), 325–338.

    Google Scholar 

  • Zhang, X. J., Zhang, L., Xiang, P., Wan, B., & Pirajno, F. (2011b). Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1), 137–148.

    Google Scholar 

  • Zhao, G. C., Sun, M., Wilde, S. A., & Sanzhong, L. (2005). Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2), 177–202.

    Article  Google Scholar 

  • Zhao, G. C., Wilde, S. A., Sun, M., Guo, J., Kröner, A., Li, S., et al. (2008). SHRIMP U–Pb zircon geochronology of the Huai’an complex: Constraints on late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. American Journal of Science, 308(3), 270–303.

    Article  Google Scholar 

  • Zhao, G. C., & Zhai, M. (2013). Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4), 1207–1240.

    Article  Google Scholar 

  • Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., Lu, F. X., Wang, C. Y., & Zhang, M. (2004). 3.6 Ga lower crust in central China: New evidence on the assembly of the North China craton. Geology, 32(3), 229–232.

    Article  Google Scholar 

  • Zhou, M. F., Zhao, J. H., Jiang, C. Y., Gao, J. F., Wang, W., & Yang, S. H. (2009). OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3–4), 583–594.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the State Key Basic Research Development Program of China (2012CB416602), Natural Science Foundation of China (41090372), the Fundamental Research Funds for the Central Universities and the China Postdoctoral Science Foundation (2014M561832). We are appreciate Academician Mingguo Zhai, Prof. Yue Zhao and Taiping Zhao originating this book and inviting us to participate in. We are indebted to Academician Chang Yinfo and Prof. Yao Zhenbiao for their kind guidance. We are grateful for the expert advice of Mr./Mrs. Li Y.X., Li C.S., Ma L.M., Bu M.K., Chen B.Q., Wu Z.L., Huang X.F., Xu L., Zang W.L., and Tu Z.B. from the No. 313 Geological Team who generously provided complete support in field. Yurong Cui, Jianzhen Geng, Jianghong Deng, Zilong Hu, Geng Chu, and Shuang Li are specially acknowledged for their help with the zircon U–Pb and Hf isotopic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, X., Liu, L. (2016). Archean Continental Crustal Accretion and Banded Iron Formations, Southeastern North China Craton. In: Zhai, M., Zhao, Y., Zhao, T. (eds) Main Tectonic Events and Metallogeny of the North China Craton. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1064-4_6

Download citation

Publish with us

Policies and ethics