Skip to main content
Book cover

Telocytes pp 77–103Cite as

Telocytes: New Players in Gallstone Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 913))

Abstract

Cholesterol gallstone disease is highly prevalent in Western countries, particularly in women and some specific ethnic groups. The mechanisms behind the formation of gallstones are not clearly understood, but gallbladder dysmotility seems to be a key factor that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile.

Given that newly described interstitial cells, telocytes, are present in the gallbladder and they are located in close vicinity of smooth muscle cell and neural fibers possibly interfering with gallbladder motility or contractility, authors are trying to summarize the current knowledge on the role of telocytes with respect to disturbed gallbladder function in gallstone disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Admirand WH, Small DM. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest. 1968;47:1043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmadi O, Nicholson Mde L, Gould ML, Mitchell A, Stringer MD. Interstitial cells of Cajal are present in human extrahepatic bile ducts. J Gastroenterol Hepatol. 2010;25:277–85.

    Article  PubMed  Google Scholar 

  3. Amigo L, Zanlugo S, Mendoza H. Risk factors and pathogenesis of cholesterol gallstones: state of the ART. Eur Rev Med Pharmacol Sci. 1999;3:241–6.

    CAS  PubMed  Google Scholar 

  4. Apstein MD, Carey MC. Pathogenesis of cholesterol gallstones: a parsimonious hypothesis. Eur J Clin Invest. 1996;26:343–52.

    Article  CAS  PubMed  Google Scholar 

  5. Barile L, Gherghiceanu M, Popescu LM, Moccetti T, Vassalli G. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres. J Biomed Biotechnol. 2012; Article ID 354605, 2012. doi:10.1155/2012/354605.

    Google Scholar 

  6. Bei Y, Wang F, Yang C, Xiao J. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19:1441–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennion LJ, Grundy SM. Risk factors for the development of cholelithiasis in man. N Engl J Med. 1978;299:1161–7.

    Article  CAS  PubMed  Google Scholar 

  8. Berci G. Historical overview of surgical treatment of biliary stone disease. In: MacFadyen BV, Arregui M, Eubanks S, Olsen DO, Peters JH, Soper NJ, Swanström LL, Wexner SD, editors. Laparoscopic surgery of the abdomen. New York: Springer; 2004. p. 139–42.

    Chapter  Google Scholar 

  9. Biss K, Ho KJ, Mikkelson BS. Some unique biologic characteristics of the Masai of East Africa. N Engl J Med. 1971;284:694–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bobryshev YV. Subset of cells immunopositive for neurokinin-1 receptor identified as arterial interstitial cells of Cajal in human large arteries. Cell Tissue Res. 2005;321:45–55.

    Article  CAS  PubMed  Google Scholar 

  11. Bouchier TA. Gallstones. Proc R Soc Med. 1977;70(9):597–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cajal RS. Histologie du systeme nerveux de l’Homme et de Vertebres. Grand sympathique, Paris, 1911, Maloine.

    Google Scholar 

  13. Campeanu RA, Radu BM, Cretoiu SM, Banciu DD, Banciu A, Cretoiu D, Popescu LM. Near-infrared low-level laser stimulation of telocytes from human myometrium. Lasers Med Sci. 2014;29:1867–74.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cantarero I, Luesma MJ, Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med. 2011;15:2594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin–are they involved in skin regeneration? J Cell Mol Med. 2012;16:1405–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Q, Amaral J, Biancani P, Behar J. Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology. 1999;116:678–85.

    Article  CAS  PubMed  Google Scholar 

  17. Chi C, Jiang XJ, Su L, Shen ZJ, Yang XJ. In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages. J Cell Mol Med. 2015;19(12):2741–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciontea SM, Radu E, Regalia T, Ceafalan L, Cretoiu D, Gherghiceanu M, Braga RI, Malincenco M, Zagrean L, Hinescu ME, Popescu LM. C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. J Cell Mol Med. 2005;9:407–20.

    Article  PubMed  Google Scholar 

  19. Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin LA Jr, Góes RM, Felisbino SL, Taboga SR. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013. In press: doi:10.1111/jcmm.12021.

    Google Scholar 

  20. Cretoiu D, Cretoiu SM, Simionescu AA, Popescu LM. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol. 2012;27:1067–78.

    CAS  PubMed  Google Scholar 

  21. Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145:357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cretoiu SM, Cretoiu D, Popescu LM. Human myometrium – the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16:2844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5(5):353–69. doi:10.1515/bmc-2014-0029.

    Article  CAS  PubMed  Google Scholar 

  24. Cretoiu SM, Radu BM, Banciu A, Banciu DD, Cretoiu D, Ceafalan LC, Popescu LM. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143:83–94.

    Article  CAS  PubMed  Google Scholar 

  25. Cretoiu SM, Simionescu AA, Caravia L, Curici A, Cretoiu D, Popescu LM. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in human non-pregnant myometrium. Acta Physiol Hung. 2011;98:329–38.

    Article  CAS  PubMed  Google Scholar 

  26. Dawidowicz J, Szotek S, Matysiak N, Mielańczyk L, Maksymowicz K. Electron microscopy of human fascia lata: focus on telocytes. J Cell Mol Med. 2015;19(10):2500–6. doi:10.1111/jcmm.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dray X, Joly F, Reijasse D, Attar A, Alves A, Panis Y, Valleur P, Messing B. Incidence, risk factors, and complications of cholelithiasis in patients with home parenteral nutrition. J Am Coll Surg. 2007;204:13–21.

    Article  PubMed  Google Scholar 

  28. Duquette R, Shmygol A, Vaillant C, Mobasheri A, Pope M, Burdyga T, Wray S. Vimentin-positive, c-kit negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005;72:276–83.

    Article  CAS  PubMed  Google Scholar 

  29. Edelstein L, Smythies J. The role of telocytes in morphogenetic bioelectrical signaling: once more unto the breach. Front Mol Neurosci. 2014;7:41.

    PubMed  PubMed Central  Google Scholar 

  30. Einarsson K, Nilsell K, Leijd B, Angelin B. Influence of age on secretion of cholesterol and synthesis of bile acids by the liver. N Engl J Med. 1985;313:277–82.

    Article  CAS  PubMed  Google Scholar 

  31. Enciu AM, Popescu LM. Telopodes of telocytes are influenced in vitro by redox conditions and ageing. Mol Cell Biochem. 2015;410(1–2):165–74. doi:10.1007/s11010-015-2548-2.

    Article  CAS  PubMed  Google Scholar 

  32. Everhart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder. Gastroenterology. 1999;117(3):632.

    Article  CAS  PubMed  Google Scholar 

  33. Faussone-Pellegrini MS, Popescu LM. Telocytes. Biomol Concepts. 2011;2:481–9.

    PubMed  Google Scholar 

  34. Friedman GD, Raviola CA, Fireman B. Prognosis of gallstones with mild or no symptoms: 25 years of follow-up in a health maintenance organization. J Clin Epidemiol. 1989;42:127–36.

    Article  CAS  PubMed  Google Scholar 

  35. Gevaert T, De Vos R, Everaerts W, Libbrecht L, Van Der Aa F, van den Oord J, Roskams T, De Ridder D. Characterization of upper lamina propria interstitial cells in bladders from patients with neurogenic detrusor overactivity and bladder pain syndrome. J Cell Mol Med. 2011;15:2586–93.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, De Ridder D. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2012;16:2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gherghiceanu M, Popescu LM. Cardiac telocytes – their junctions and functional implications. Cell Tissue Res. 2012;348:265–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9:893–910.

    Article  PubMed  Google Scholar 

  40. Gibbons SJ, De Giorgio R, Faussone-Pellegrini MS, Garrity-Park MM, Miller SM, Schmalz PF, Young-Fadok TM, Larson DW, Dozois EJ, Camilleri M, Stanghellini V, Szurszewski JH, Farrugia G. Apoptotic cell death of human interstitial cells of Cajal. Neurogastroenterol Motil. 2009;21:85–93.

    Article  CAS  PubMed  Google Scholar 

  41. Gordon-Taylor G. On gallstones and their sufferers. Br J Surg. 1937;25:241–51.

    Article  Google Scholar 

  42. Harhun MI, Pucovsky V, Povstyan OV, Gordienko DV, Bolton TB. Interstitial cells in the vasculature. J Cell Mol Med. 2005;9:232–43.

    Article  CAS  PubMed  Google Scholar 

  43. Hatta K, Huang ML, Weisel RD, Li RK. Culture of rat endometrial telocytes. J Cell Mol Med. 2012;16:1392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heuman DM. Quantitative estimation of the hydrophilic-hydrophobic balance of mixed bile salt solutions. J Lipid Res. 1989;30(5):719–30.

    CAS  PubMed  Google Scholar 

  45. Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 2007;38:275–84.

    Article  PubMed  Google Scholar 

  46. Hu WM, Luo HS, Ding XW, Wang L. Expression of c-kit messenger ribonucleic acid and c-kit protein in the gallbladders in guinea pigs of high cholesterol diet. Dig Dis Sci. 2009;54:1651–5.

    Article  CAS  PubMed  Google Scholar 

  47. Humbert L, Maubert MA, Wolf C, Duboc H, Mahé M, Farabos D, Seksik P, Mallet JM, Trugnan G, Masliah J, Rainteau D. Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;899:135–45.

    Article  CAS  PubMed  Google Scholar 

  48. Jüngst D, Brenner G, Pratschke E, Paumgartner G. Low-dose ursodeoxycholic acid prolongs cholesterol nucleation time in gallbladder bile of patients with cholesterol gallstones. J Hepatol. 1989;8(1):1–6.

    Article  PubMed  Google Scholar 

  49. Kim JK, Cho SM, Kang SH, Kim E, Yi H, Yun ES, Lee DG, Cho HJ, Paik YH, Choi YK, Haam SJ, Shin HC, Lee DK. N-3 polyunsaturated fatty acid attenuates cholesterol gallstones by suppressing mucin production with a high cholesterol diet in mice. J Gastroenterol Hepatol. 2012;27(11):1745–51. doi:10.1111/j.1440-1746.2012.07227.x.

    Article  CAS  PubMed  Google Scholar 

  50. Kurtin WE, Schwesinger WH, Diehl AK. Age-related changes in the chemical composition of gallstones. Int J Surg Investig. 2000;2:299–307.

    CAS  PubMed  Google Scholar 

  51. LaMont JT, Smith BF, Moore JR. Role of gallbladder mucin in pathophysiology of gallstones. Hepatology. 1984;4:51S–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005;9:543–56.

    Article  CAS  PubMed  Google Scholar 

  53. Lavoie B, Balemba OB, Nelson MT, Ward SM, Mawe GM. Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 2007;579:487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lavoie B, Nausch B, Zane EA, Leonard MR, Balemba OB, Bartoo AC, Wilcox R, Nelson MT, Carey MC, Mawe GM. Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 2012;24(7):e313–24. doi:10.1111/j.1365-2982.2012.01935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee DK, Jang SI. Can fish oil dissolve gallstones? J Gastroenterol Hepatol. 2012;27(11):1649–51. doi:10.1111/j.1440-1746.2012.07234.x.

    Article  PubMed  Google Scholar 

  56. Li L, Lin M, Li L, Wang R, Zhang C, Qi G, Xu M, Rong R, Zhu T. Renal telocytes contribute to the repair of ischemically injured renal tubules. J Cell Mol Med. 2014;18:1144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Litynski GS. Profiles in laparoscopy: Mouret, Dubois, and Perissat: the laparoscopic breakthrough in Europe (1987–1988). JSLS. 1999;3(2):163–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lopis S. The incidence cholelithiasis in the Bantu. Clin Proc Child Hosp Dist Columbia. 1947;3:338.

    Google Scholar 

  59. Matyja A, Gil K, Pasternak A, Sztefko K, Gajda M, Tomaszewski KA, Matyja M, Walocha JA, Kulig J, Thor P. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17(6):734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res. 2002;310:77–84.

    Article  CAS  PubMed  Google Scholar 

  61. Morgenstern L. Carl Langenbuch and the first cholecystectomy. Surg Endosc. 1992;6(3):113–4.

    Article  CAS  PubMed  Google Scholar 

  62. Moschetta A, Stolk MF, Rehfeld JF, Portincasa P, Slee PH, Koppeschaar HP, Van Erpecum KJ, Vanberge-Henegouwen GP. Severe impairment of postprandial cholecystokinin release and gall-bladder emptying and high risk of gallstone formation in acromegalic patients during Sandostatin LAR. Aliment Pharmacol Ther. 2001;15:181–5.

    Article  CAS  PubMed  Google Scholar 

  63. Moschetta A, van Berge-Henegouwen GP, Portincasa P, Palasciano G, van Erpecum KJ. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition. J Lipid Res. 2001;42(8):1273–81.

    CAS  PubMed  Google Scholar 

  64. Nicolescu MI, Bucur A, Dinca O, Rusu MC, Popescu LM. Telocytes in parotid glands. Anat Rec (Hoboken). 2012;295:378–85.

    Article  Google Scholar 

  65. Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012;41:949–56.

    Article  PubMed  Google Scholar 

  66. Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM. Dynamics of telopodes (telocytes prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem. 2015;398:157–64.

    Article  CAS  PubMed  Google Scholar 

  67. Njeze GE. Gallstones. Niger J Surg. 2013;19(2):49–55. doi:10.4103/1117-6806.119236.

    PubMed  PubMed Central  Google Scholar 

  68. Pasternak A, Gajda M, Gil K, Matyja A, Tomaszewski KA, Walocha JA, Kulig J, Thor P. Evidence of interstitial Cajal-like cells in human gallbladder. Folia Histochem Cytobiol. 2012;50(4):581–5. doi:10.5603/19673.

    Article  PubMed  Google Scholar 

  69. Pasternak A, Gil K, Matyja A, Gajda M, Sztefko K, Walocha JA, Kulig J, Thor P. Loss of gallbladder interstitial Cajal-like cells in patients with cholelithiasis. Neurogastroenterol Motil. 2013;25(1):e17–24. doi:10.1111/nmo.12037. Epub 2012 Nov 1.

    Article  PubMed  Google Scholar 

  70. Paumgartner G, Gerok W, Bertolotti M, Bortolotti S, Menozzi D. Ageing and bile acid metabolism: studies on 7α hydroxylation of cholesterol in humans. In: Paumgartner G, Gerok W, editors. Trends in bile acid research. Lancaster: Kluwer Academic Publishers; 1989. p. 75–8.

    Google Scholar 

  71. Paumgartner G, Sauerbruch T. Gallstones: pathogenesis. Lancet. 1991;338:1117–21.

    Article  CAS  PubMed  Google Scholar 

  72. Pomare EW, Heaton KW. Bile salt metabolism in patients with gallstones in functioning gallbladders. Gut. 1973;14(11):885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pomeranz IS, Shaffer EA. Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology. 1985;88:787–91.

    Article  CAS  PubMed  Google Scholar 

  74. Popescu BO, Gherghiceanu M, Kostin S, Ceafalan L, Popescu LM. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012;516:265–9.

    Article  CAS  PubMed  Google Scholar 

  75. Popescu LM, Andrei F, Hinescu ME. Snapshots of mammary gland interstitial cells: methylene-blue vital staining and c-kit immunopositivity. J Cell Mol Med. 2005;9:476–7.

    Article  CAS  PubMed  Google Scholar 

  76. Popescu LM, Ciontea SM, Cretoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann N Y Acad Sci. 2007;1101:139–65.

    Article  CAS  PubMed  Google Scholar 

  77. Popescu LM, Faussone-Pellegrini MS. TELOCYTES – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Popescu LM, Hinescu ME, Ionescu N, Ciontea SM, Cretoiu D, Ardeleanu C. Interstitial cells of Cajal in pancreas. J Cell Mol Med. 2005;9:169–90.

    Article  CAS  PubMed  Google Scholar 

  80. Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med. 2011;15(6):1379–92. doi:10.1111/j.1582-4934.2011.01330.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Popescu LM, Nicolescu MI. Telocytes and stem cells. In: dos Santos Goldenberg RC, Campos de Carvalho AC, editors. Resident stem cells and regenerative therapy. Oxford: Academic; 2013. p. 205–31. doi:10.1016/B978-0-12-416012-5.00011-6.

    Chapter  Google Scholar 

  82. Portincasa P, Di Ciaula A, Vendemiale G, Palmieri V, Moschetta A, Vanberge-Henegouwen GP, Palasciano G. Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones. Eur J Clin Invest. 2000;30:317–24.

    Article  CAS  PubMed  Google Scholar 

  83. Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. Lancet. 2006;368(9531):230–9.

    Article  CAS  PubMed  Google Scholar 

  84. Portincasa P, Moschetta A, van Erpecum KJ, Calamita G, Margari A, van Berge-Henegouwen GP, Palasciano G. Pathways of cholesterol crystallization in model bile and native bile. Dig Liver Dis. 2003;35(2):118–26.

    Article  CAS  PubMed  Google Scholar 

  85. Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16:3116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Radu E, Regalia T, Ceafalan L, Andrei F, Cretoiu D, Popescu LM. Cajal-type cells from human mammary gland stroma: phenotype characteristics in cell culture. J Cell Mol Med. 2005;9:748–52.

    Article  CAS  PubMed  Google Scholar 

  87. Roatesi I, Radu BM, Cretoiu D, Cretoiu SM. Uterine telocytes: a review of current knowledge. Biol Reprod. 2015;93(1):10, 1–13. doi:10.1095/biolreprod.114.125906.

    Article  CAS  Google Scholar 

  88. Sandler RS, Everhart JE, Donowitz M, Adams E, Cronin K, Goodman C, Gemmen E, Shah S, Avdic A, Rubin R. The burden of selected digestive diseases in the United States. Gastroenterology. 2002;122:1500–11.

    Article  PubMed  Google Scholar 

  89. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra. J Cell Mol Med. 2006;10:280–91.

    Article  CAS  PubMed  Google Scholar 

  90. Shaffer EA. Gallstone disease: epidemiology of gallbladder stone disease. Best Pract Res Clin Gastroenterol. 2006;20:981–96.

    Article  PubMed  Google Scholar 

  91. Shaffer EA. The role of the gallbladder in gallstone formation. In: Fisher MM, Goresky CA, Shaffer EA, Strasberg SM, editors. Gallstones. New York: Plenum; 1979. p. 223–49.

    Chapter  Google Scholar 

  92. Sharma BC, Agarwal DK, Dhiman RK, Baijal SS, Choudhuri G, Saraswat VA. Bile lithogenicity and gallbladder emptying in patients with microlithiasis: effect of bile acid therapy. Gastroenterology. 1998;115:124–8.

    Article  CAS  PubMed  Google Scholar 

  93. Shehadi WH. The biliary system through the ages. Int Surg. 1979;64:63–78.

    CAS  PubMed  Google Scholar 

  94. Shepherd JA. The contribution of Robert Lawson Tait to the development of abdominal surgery. Surg Annu. 1986;18:339–49.

    CAS  PubMed  Google Scholar 

  95. Sitzmann JV, Pitt HA, Steinborn PA, Pasha ZR, Sanders RC. Cholecystokinin prevents parenteral nutrition induced biliary sludge in humans. Surg Gynecol Obstet. 1990;170:25–31.

    CAS  PubMed  Google Scholar 

  96. Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2013;7:278. doi:10.3389/fincel.2013.00278.

    Google Scholar 

  97. Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, Faussone-Pellegrini MS. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010;192:325–39.

    Article  CAS  PubMed  Google Scholar 

  98. Thistle JL, Cleary PA, Lachin JM, Tyor MP, Hersh T. The natural history of cholelithiasis: The National Cooperative Gallstone Study. Ann Intern Med. 1984;101:171–5.

    Article  CAS  PubMed  Google Scholar 

  99. Torihashi S, Nishi K, Tokutomi Y, Nishi T, Ward S, Sanders KM. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999;117:140–8.

    Article  CAS  PubMed  Google Scholar 

  100. Trotman BW. Pigment gallstone disease. Gastroenterol Clin North Am. 1991;20:111–26.

    CAS  PubMed  Google Scholar 

  101. Valdivieso V, Covarrubias C, Siegel F, Cruz F. Pregnancy and cholelithiasis: pathogenesis and natural course of gallstones diagnosed in early puerperium. Hepatology. 1993;17(1):1–4.

    CAS  PubMed  Google Scholar 

  102. van Erpecum KJ, Venneman NG, Portincasa P, Vanberge-Henegouwen GP. Review article: agents affecting gall-bladder motility – role in treatment and prevention of gallstones. Aliment Pharmacol Ther. 2000;14 Suppl 2:66–70.

    Article  PubMed  Google Scholar 

  103. van Erpecum KJ. Biliary lipids, water and cholesterol gallstones. Biol Cell. 2005;97(11):815–22.

    Article  PubMed  CAS  Google Scholar 

  104. van Gulik TM. Langenbuch’s cholecystectomy, once a remarkably controversial operation. Neth J Surg. 1986;38(5):138–41.

    PubMed  Google Scholar 

  105. Vannucchi MG, Traini C, Guasti D, Giulio DP, Faussone-Pellegrini MS. Telocytes subtypes in human urinary bladder. J Cell Mol Med. 2014;18:2000–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vázquez MC, Rigotti A, Zanlungo S. Molecular mechanisms underlying the link between nuclear receptor function and cholesterol gallstone formation. J Lipids. 2012;2012:547643. doi:10.1155/2012/547643. Epub 2011 Nov 1.

    Article  PubMed  CAS  Google Scholar 

  107. Venneman NG, van Erpecum KJ. Pathogenesis of gallstones. Gastroenterol Clin North Am. 2010;39(2):171–83.

    Article  PubMed  Google Scholar 

  108. Wang DQ, Carey MC. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res. 1996;37:2539–49.

    CAS  PubMed  Google Scholar 

  109. Wang DQ, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest. 2004;114:521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang DQH, Carey MC. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res. 1996;37:606–30.

    CAS  PubMed  Google Scholar 

  111. Wang J, Ye L, Jin M, Wang X. Global analyses of chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct. 2015;10(1):9. doi:10.1186/s13062-015-0042-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Xu QW, Shaffer EA. The potential site of impaired gallbladder contractility in an animal model of cholesterol gallstone disease. Gastroenterology. 1996;110:251–7.

    Article  CAS  PubMed  Google Scholar 

  113. Yang H, Petersen GM, Roth MP, Schoenfield LJ, Marks JW. Risk factors for gallstone formation during rapid loss of weight. Dig Dis Sci. 1992;37:912–8.

    Article  CAS  PubMed  Google Scholar 

  114. Yang XJ, Yang J, Liu Z, Yang G, Shen ZJ. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med. 2014. doi:10.1111/jcmm.12427.

    Google Scholar 

  115. Zheng Y, Zhu T, Lin M, Wu D, Wang X. Telocytes in the urinary system. J Transl Med. 2012;10:188. doi:10.1186/1479-5876-10-188.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the involvement of many colleagues who have participated in our studies and contributed with helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Pasternak MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Pasternak, A., Gil, K., Matyja, A. (2016). Telocytes: New Players in Gallstone Disease. In: Wang, X., Cretoiu, D. (eds) Telocytes. Advances in Experimental Medicine and Biology, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-10-1061-3_5

Download citation

Publish with us

Policies and ethics