Skip to main content

Telocytes in Chronic Inflammatory and Fibrotic Diseases

  • Chapter
  • First Online:
Telocytes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 913))

Abstract

Telocytes are a peculiar stromal (interstitial) cell type implicated in tissue homeostasis and development, as well as in the pathophysiology of several disorders. Severe damage and reduction of telocytes have been reported during fibrotic remodeling of multiple organs in various diseases, including scleroderma, Crohn’s disease, ulcerative colitis, and liver fibrosis, as well as in chronic inflammatory lesions like those of primary Sjögren’s syndrome and psoriasis. Owing to their close relationship with stem cells, telocytes are also supposed to contribute to tissue repair/regeneration. Indeed, telocytes are universally considered as “connecting cells” mostly oriented to intercellular signaling. On the basis of recent promising experimental findings, in the near future, telocyte transplantation might represent a novel therapeutic opportunity to control the evolution of chronic inflammatory and fibrotic diseases. Notably, there is evidence to support that telocytes could help in preventing abnormal activation of immune cells and fibroblasts, as well as in attenuating the altered matrix organization during the fibrotic process. By targeting telocytes alone or in tandem with stem cells, we might be able to promote regeneration and prevent the evolution to irreversible tissue injury. Besides exogenous transplantation, exploring pharmacological or non-pharmacological methods to enhance the growth and/or survival of telocytes could be an additional therapeutic strategy for many disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay ED. Cell and extracellular matrix: their organization and mutual dependence. Mod Cell Biol. 1983;2:509–48.

    Google Scholar 

  2. Doljanski F. The sculpturing role of fibroblast-like cells in morphogenesis. Perspect Biol Med. 2004;47:339–56.

    Article  PubMed  Google Scholar 

  3. Barone F, Nayar S, Buckley CD. The role of non-hematopoietic stromal cells in the persistence of inflammation. Front Immunol. 2013;3:416.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Naylor AJ, Filer A, Buckley CD. The role of stromal cells in the persistence of chronic inflammation. Clin Exp Immunol. 2013;171:30–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McGettrick HM, Smith E, Filer A, et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur J Immunol. 2009;39:113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corsiero E, Bombardieri M, Manzo A, et al. Role of lymphoid chemokines in the development of functional ectopic lymphoid structures in rheumatic autoimmune diseases. Immunol Lett. 2012;145:62–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pitzalis C, Jones GW, Bombardieri M, et al. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol. 2014;14:47–62.

    Article  CAS  Google Scholar 

  8. van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10:664–74.

    Article  PubMed  CAS  Google Scholar 

  9. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180:1340–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Popescu LM, Faussone-Pellegrini MS. Telocytes – a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to telocytes. J Cell Mol Med. 2010;14:729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faussone-Pellegrini MS, Popescu LM. Telocytes. Biomol Concepts. 2011;2:481–9.

    PubMed  Google Scholar 

  14. Cretoiu SM, Popescu LM. Telocytes revisited. Biomol Concepts. 2014;5:353–69.

    Article  CAS  PubMed  Google Scholar 

  15. Kang Y, Zhu Z, Zheng Y, et al. Skin telocytes versus fibroblasts: two distinct dermal cell populations. J Cell Mol Med. 2015;19:2530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bei Y, Zhou Q, Fu S, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;18(10):e0115991.

    Article  CAS  Google Scholar 

  17. Díaz-Flores L, Gutiérrez R, García MP, et al. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol. 2014;29:831–70.

    PubMed  Google Scholar 

  18. Vannucchi MG, Traini C, Manetti M, et al. Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 2013;17:1099–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou Q, Wei L, Zhong C, et al. Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med. 2015;19:2036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pieri L, Vannucchi MG, Faussone-Pellegrini MS. Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med. 2008;12:1944–55.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ceafalan L, Gherghiceanu M, Popescu LM, et al. Telocytes in human skin–are they involved in skin regeneration? J Cell Mol Med. 2012;16:1405–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manetti M, Guiducci S, Ruffo M, et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milia AF, Ruffo M, Manetti M, et al. Telocytes in Crohn’s disease. J Cell Mol Med. 2013;17:1525–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kostin S, Popescu LM. A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med. 2009;13:295–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng Y, Li H, Manole CG, et al. Telocytes in trachea and lungs. J Cell Mol Med. 2011;15:2262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popescu LM, Gherghiceanu M, Suciu LC, et al. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manetti M, Rosa I, Messerini L, et al. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med. 2015;19:62–73.

    Article  PubMed  Google Scholar 

  28. Alunno A, Ibba-Manneschi L, Bistoni O, et al. Telocytes in minor salivary glands of primary Sjögren’s syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis. J Cell Mol Med. 2015;19:1689–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manetti M, Rosa I, Messerini L, et al. A loss of telocytes accompanies fibrosis of multiple organs in systemic sclerosis. J Cell Mol Med. 2014;18:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun X, Zheng M, Zhang M, et al. Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med. 2014;18:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng M, Sun X, Zhang M, et al. Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med. 2014;18:2044–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Ye L, Jin M, et al. Global analyses of chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct. 2015;10:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhu Y, Zheng M, Song D, et al. Global comparison of chromosome X genes of pulmonary telocytes with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. J Transl Med. 2015;13:318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng Y, Cretoiu D, Yan G, et al. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med. 2014;18:1035–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng Y, Cretoiu D, Yan G, et al. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med. 2014;18:568–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albulescu R, Tanase C, Codrici E, et al. The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med. 2015;19:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cismasiu VB, Radu E, Popescu LM. miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med. 2011;15:1071–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng Y, Zhang M, Qian M, et al. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17:567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cretoiu D, Hummel E, Zimmermann H, et al. Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med. 2014;18:2157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010;14:1061–3.

    PubMed  PubMed Central  Google Scholar 

  41. Bani D, Formigli L, Gherghiceanu M, et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14:2531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med. 2010;14:871–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Luesma MJ, Gherghiceanu M, Popescu LM. Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med. 2013;17:1016–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popescu LM, Gherghiceanu M, Manole CG, et al. Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med. 2009;13:866–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gherghiceanu M, Manole CG, Popescu LM. Telocytes in endocardium: electron microscope evidence. J Cell Mol Med. 2010;14:2330–4.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cretoiu D, Cretoiu SM, Simionescu AA, et al. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol. 2012;27:1067–78.

    CAS  PubMed  Google Scholar 

  47. Popescu LM, Gherghiceanu M, Cretoiu D, et al. The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med. 2005;9:714–30.

    Article  CAS  PubMed  Google Scholar 

  48. Rusu MC, Mirancea N, Mănoiu VS, et al. Skin telocytes. Ann Anat. 2012;194:359–67.

    Article  CAS  PubMed  Google Scholar 

  49. Cismaşiu VB, Popescu LM. Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med. 2015;19:351–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Manole CG, Cismasiu V, Gherghiceanu M, et al. Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med. 2011;15:2284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fertig ET, Gherghiceanu M, Popescu LM. Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med. 2014;18:1938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smythies J, Edelstein L. Telocytes, exosomes, gap junctions and the cytoskeleton: the makings of a primitive nervous system? Front Cell Neurosci. 2014;7:278.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cretoiu D, Gherghiceanu M, Hummel E, et al. FIB-SEM tomography of human skin telocytes and their extracellular vesicles. J Cell Mol Med. 2015;19:714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cretoiu SM, Cretoiu D, Marin A, et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145:357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bei Y, Wang F, Yang C, et al. Telocytes in regenerative medicine. J Cell Mol Med. 2015;19:1441–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cretoiu SM, Radu BM, Banciu A, et al. Isolated human uterine telocytes: immunocytochemistry and electrophysiology of T-type calcium channels. Histochem Cell Biol. 2015;143:83–94.

    Article  CAS  PubMed  Google Scholar 

  57. Sheng J, Shim W, Lu J, et al. Electrophysiology of human cardiac atrial and ventricular telocytes. J Cell Mol Med. 2014;18:355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manole CG, Gherghiceanu M, Simionescu O. Telocyte dynamics in psoriasis. J Cell Mol Med. 2015;19:1504–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu S, Wang F, Cao Y, et al. Telocytes in human liver fibrosis. J Cell Mol Med. 2015;19:676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6:45–9.

    Article  PubMed  Google Scholar 

  61. Zheng Y, Bai C, Wang X. Telocyte morphologies and potential roles in diseases. J Cell Physiol. 2012;227:2311–7.

    Article  CAS  PubMed  Google Scholar 

  62. Matyja A, Gil K, Pasternak A, et al. Telocytes: new insight into the pathogenesis of gallstone disease. J Cell Mol Med. 2013;17:734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang J, Chi C, Liu Z, et al. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med. 2015;19:1720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Richter M, Kostin S. The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med. 2015;19:2597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao B, Chen S, Liu J, et al. Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med. 2013;17:123–33.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao B, Liao Z, Chen S, et al. Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med. 2014;18:780–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117:557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med. 2009;360:1989–2003.

    Article  CAS  PubMed  Google Scholar 

  69. Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol. 2011;8:42–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Manetti M, Guiducci S, Ibba-Manneschi L, et al. Mechanisms in the loss of capillaries in systemic sclerosis: angiogenesis versus vasculogenesis. J Cell Mol Med. 2010;14:1241–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manetti M, Guiducci S, Romano E, et al. Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis Rheum. 2013;65:247–57.

    Article  CAS  PubMed  Google Scholar 

  72. Manneschi LI, Del Rosso A, Milia AF, et al. Damage of cutaneous peripheral nervous system evolves differently according to the disease phase and subset of systemic sclerosis. Rheumatology. 2005;44:607–13.

    Article  PubMed  Google Scholar 

  73. Jain S, Shahane A, Derk CT. Interstitial lung disease in systemic sclerosis: pathophysiology, current and new advances in therapy. Inflamm Allergy Drug Targets. 2012;11:266–77.

    Article  CAS  PubMed  Google Scholar 

  74. Meune C, Vignaux O, Kahan A, et al. Heart involvement in systemic sclerosis: evolving concept and diagnostic methodologies. Arch Cardiovasc Dis. 2010;103:46–52.

    Article  PubMed  Google Scholar 

  75. Sallam H, McNearney TA, Chen JD. Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther. 2006;23:691–712.

    Article  CAS  PubMed  Google Scholar 

  76. Manetti M, Neumann E, Milia AF, et al. Severe fibrosis and increased expression of fibrogenic cytokines in the gastric wall of systemic sclerosis patients. Arthritis Rheum. 2007;56:3442–7.

    Article  PubMed  Google Scholar 

  77. Roberts CG, Hummers LK, Ravich WJ, et al. A case-controlled study of the pathology of esophageal disease in systemic sclerosis (scleroderma). Gut. 2006;55:1697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wei J, Bhattacharyya S, Tourtellotte WG, et al. Fibrosis in systemic sclerosis: emerging concepts and implications for targeted therapy. Autoimmun Rev. 2011;10:267–75.

    Article  CAS  PubMed  Google Scholar 

  79. Ebmeier S, Horsley V. Origin of fibrosing cells in systemic sclerosis. Curr Opin Rheumatol. 2015;27:555–62.

    Article  CAS  PubMed  Google Scholar 

  80. Popescu LM. The Tandem: telocytes – stem cells. Int J Biol Biomed Eng. 2011;5:83–92.

    Google Scholar 

  81. Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med. 2011;15:1005–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Manetti M, Milia AF, Benelli G, et al. The gastric wall in systemic sclerosis patients: a morphological study. Ital J Anat Embryol. 2010;115:115–21.

    PubMed  Google Scholar 

  83. Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease – current knowledge and future perspectives. J Crohns Colitis. 2008;2:279–90.

    Article  PubMed  Google Scholar 

  84. Baumgard DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  Google Scholar 

  85. Maul J, Zeitz M. Ulcerative colitis: immune function, tissue fibrosis and current therapeutic considerations. Langenbecks Arch Surg. 2012;397:1–10.

    Article  PubMed  Google Scholar 

  86. Latella G, Sferra R, Speca S, et al. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur Rev Med Pharmacol Sci. 2013;17:1283–304.

    CAS  PubMed  Google Scholar 

  87. Yamagata M, Mikami T, Tsuruta T, et al. Submucosal fibrosis and basic-fibroblast growth factor-positive neutrophils correlate with colonic stenosis in cases of ulcerative colitis. Digestion. 2011;84:12–21.

    Article  CAS  PubMed  Google Scholar 

  88. Gordon IO, Agrawal N, Goldblum JR, et al. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm Bowel Dis. 2014;20:2198–206.

    Article  PubMed  Google Scholar 

  89. Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease: progress in basic and clinical science. Curr Opin Gastroenterol. 2008;24:462–8.

    Article  CAS  PubMed  Google Scholar 

  90. Quigley EM. What we have learned about colonic motility: normal and disturbed. Curr Opin Gastroenterol. 2010;26:53–60.

    Article  PubMed  Google Scholar 

  91. Wood JD. Enteric nervous system: reflex, pattern generators and motility. Curr Opin Gastroenterol. 2008;24:149–58.

    Article  PubMed  Google Scholar 

  92. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111:492–515.

    Article  CAS  PubMed  Google Scholar 

  93. Wang XY, Zarate N, Soderholm JD, et al. Ultrastructural injury to interstitial cells of Cajal and communication with mast cells in Crohn’s disease. Neurogastroenterol Motil. 2007;19:349–64.

    Article  PubMed  Google Scholar 

  94. Bernardini N, Segnani C, Ippolito C, et al. Immunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis. J Cell Mol Med. 2012;16:318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bassotti G, Antonelli E, Villanacci V, et al. Gastrointestinal motility disorders in inflammatory bowel diseases. World J Gastroenterol. 2014;20:37–44.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ohlsson B, Veress B, Lindgren S, et al. Enteric ganglioneuritis and abnormal interstitial cells of Cajal: features of inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:721–6.

    Article  PubMed  Google Scholar 

  97. Kurahashi M, Nakano Y, Hennig GW, et al. Platelet derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J Cell Mol Med. 2012;16:1397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vanderwinden JM, Rumessen JJ, De Laet MH, et al. CD34 + cells in human intestine are fibroblasts adjacent to, but distinct from, interstitial cells of Cajal. Lab Invest. 1999;79:59–65.

    CAS  PubMed  Google Scholar 

  99. Porcher C, Baldo M, Henry M, et al. Deficiency of interstitial cells of Cajal in the small intestine of patients with Crohn’s disease. Am J Gastroenterol. 2002;97:118–25.

    Article  PubMed  Google Scholar 

  100. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56.

    Article  CAS  PubMed  Google Scholar 

  101. Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A. 2014;111:E3297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao J, Wang F, Liu Z, et al. Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med. 2013;17:1537–42.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang F, Song Y, Bei Y, et al. Telocytes in liver regeneration: possible roles. J Cell Mol Med. 2014;18:1720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cornec D, Jamin C, Pers JO. Sjögren’s syndrome: where do we stand, and where shall we go? J Autoimmun. 2014;51:109–14.

    Article  PubMed  Google Scholar 

  107. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2013;9:544–56.

    Article  CAS  PubMed  Google Scholar 

  108. Greenspan JS, Daniels TE, Talal N, et al. The histopathology of Sjögren’s syndrome in labial salivary gland biopsies. Oral Surg Oral Med Oral Pathol. 1974;37:217–29.

    Article  CAS  PubMed  Google Scholar 

  109. Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Anat Rec (Hoboken). 2012;295:378–85.

    Article  Google Scholar 

  110. Kim J, Krueger JG. The immunopathogenesis of psoriasis. Dermatol Clin. 2015;33:13–23.

    Article  CAS  PubMed  Google Scholar 

  111. Chu CC, Di Meglio P, Nestle FO. Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol. 2011;23:28–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chua RA, Arbiser JL. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity. 2009;42:574–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Manetti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ibba-Manneschi, L., Rosa, I., Manetti, M. (2016). Telocytes in Chronic Inflammatory and Fibrotic Diseases. In: Wang, X., Cretoiu, D. (eds) Telocytes. Advances in Experimental Medicine and Biology, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-10-1061-3_4

Download citation

Publish with us

Policies and ethics