Skip to main content

Paracrine Signaling in the Prostatic Stroma: A Novel Role for the Telocytes Revealed in Rodents’ Ventral Prostate

  • Chapter
  • First Online:
Book cover Telocytes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 913))

Abstract

The telocytes have recently been described in the prostate gland. In mature gland, they exist in close association with the acini and their telopodes form networks whose functions remain unclear. In this chapter, our group gives a brief introduction to telocytes and explores the history that led to such a concept and then discusses hypotheses and presents new evidences about the roles exerted by telocytes in the prostate. First is given emphasis on the role that these cells possibly play in paracrine signaling employed in the differentiation of smooth muscle periacinar are then discussed other roles potentially performed by telocytes in the prostate, such as the organizational, where these cells would act in order to delimit stromal microenvironments, thereby assisting the differentiation of the prostatic anatomical components. In addition, the pacemaker function of smooth muscle cells contraction, as evidenced by the presence of caveolae and gap-type junction and, finally, the role of telocytes in prostate remodeling and the possible action as adult progenitor cells. Generally speaking, the chapter reaffirms the existence of telocytes as distinct cells of other stromal cells and the importance of this new cell type for normal metabolism and prostate development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bani D, Formigli L, Gherghiceanu M, et al. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010;14(10):2531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bei Y, Zhou Q, Fu S, et al. Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One. 2015;10(2):e0115991.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bosco C, Díaz E, Gutiérrez R, et al. A putative role for telocytes in placental barrier impairment during preeclampsia. Med Hypotheses. 2014;84:72–7.

    Article  PubMed  Google Scholar 

  4. Botchkarev VA, Kishimoto J. Molecular control of epithelial–mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc. 2003;8:46–55. doi:10.1046/j.1523-1747.2003.12171.x.

    Article  CAS  PubMed  Google Scholar 

  5. Carmona IC, Bartolomé MJL, Escribano CJ. Identification of telocytes in the lamina propria of rat duodenum: transmission electron microscopy. J Cell Mol Med. 2011;15(1):26–30. doi:10.1111/j.1582-4934.2010.01207.x.

    Article  PubMed Central  Google Scholar 

  6. Corradi LS, Jesus MM, Fochi RA, et al. Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med. 2013;17:398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Creţoiu SM, Creţoiu D, Marin A, et al. Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction. 2013;145(4):357–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Creţoiu SM, Creţoiu D, Popescu LM. Human myometrium – the ultrastructural 3D network of telocytes. J Cell Mol Med. 2012;16(11):2844–9. doi:10.1111/j.1582-4934.2012.01651.x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cunha GR. The role of androgens in the epithelio-mesenchymal interactions involved in prostatic morphogenesis in embryonic mice. Anat Rec. 1973;1:87–96.

    Article  Google Scholar 

  10. Faussone Pellegrini MS, Cortesini C, Romagnoli P. Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells. Arch Ital Anat Embriol. 1977;82:157.

    CAS  PubMed  Google Scholar 

  11. Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells (ICLC) in human resting mammary gland stroma. Transmission electron microscope (TEM) identification. J Cell Mol Med. 2005;9(4):893–910.

    Article  PubMed  Google Scholar 

  12. Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 2000;80(3):142–7.

    Article  CAS  PubMed  Google Scholar 

  13. Iino S, Nojyo Y. Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol. 2009;72(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  14. Keith A. A new theory of the causation of enterostasis. Lancet. 1915;2:371–5.

    Article  Google Scholar 

  15. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62(4):295–316.

    Article  CAS  PubMed  Google Scholar 

  16. Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine. J Auton Nerv Syst. 1996;61(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  17. Kostin S. Myocardial telocytes: a specific new cellular entity. J Cell Mol Med. 2010;14:1917–21.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manetti M, Guiducci S, Ruffo M, et al. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012;41(6):949–56. doi:10.1097/MPA.0b013e31823fbded.

    Article  PubMed  Google Scholar 

  20. Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Ann N Y Acad Sci. 2011;295(3):378–85. doi:10.1002/ar.21540.

    Google Scholar 

  21. Niu Y, Wang J, Shang Z, et al. Increased CK5/CK8-positive intermediate cells with stromal smooth muscle cell atrophy in the mice lacking prostate epithelial androgen receptor. PLoS One. 2011;6(7):e20202. doi:10.1371/journal.pone.0020202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Popescu LM, Faussone-Pellegrini M-S. Telocytes – a case of serendipity: the winding from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to Telocytes. J Cell Mol Med. 2010;14(4):729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Popescu L, Hinescu M, Radu E, et al. CD117/c-kit positive interstitial (Cajal-like) cells in human pancreas. J Cell Mol Med. 2005;9:738–9.

    Article  Google Scholar 

  24. Popescu LM, Ciontea SM, Creţoiu D. Interstitial Cajal-like cells in human uterus and fallopian tube. Ann NY Acad Sci. 2007;1101:139–65.

    Article  CAS  PubMed  Google Scholar 

  25. Prins GS, Birch L. The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen. Endocrinology. 1995;136:1303–14.

    CAS  PubMed  Google Scholar 

  26. Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation. 2008;76(6):641–59. doi:10.1111/j.1432-0436.2008.00277.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi G, Lin M, Xu M, et al. Telocytes in the human kidney cortex. J Cell Mol Med. 2012;16(12):3116–22. doi:10.1111/j.1582-4934.2012.01582.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramon y Cajal S. Histologie du Systeme Nerveux de L’Homme et des Vertebres. Volume 2. Paris: A. Maloine; 1911.

    Google Scholar 

  29. Ribatti D, Santoiemma M. Epithelial-mesenchymal interactions: a fundamental developmental biology mechanism. Int J Dev Biol. 2014;58:303–6. doi:10.1387/ijdb.140143dr.

    Article  PubMed  Google Scholar 

  30. Rumessen JJ. Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon. Dan Med Bull. 1994;41(3):275–93.

    CAS  PubMed  Google Scholar 

  31. Rusu MC, Pop F, Hostiuc S, et al. Telocytes form networks in normal cardiac tissues. Histol Histopathol. 2012;27:807–16.

    CAS  PubMed  Google Scholar 

  32. Sanches BDA, Biancardi MF, Santos FCA, et al. Budding process during the organogenesis of the ventral prostatic lobe in mongolian gerbil. Microsc Res Tech. 2014;77:458–66.

    Article  CAS  PubMed  Google Scholar 

  33. Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907. doi:10.1152/physrev.00037.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shafik A, Shafik I, El-Sibai O. Identification of c-kit-positive cells in the human prostate: the interstitial cells of Cajal. Arch Androl. 2005;51(5):345–51.

    Article  CAS  PubMed  Google Scholar 

  35. Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol. 2004;66:625–45.

    Article  CAS  PubMed  Google Scholar 

  36. Sidney LE, Branch MJ, Dunphy SE, et al. Concise review: evidence for CD34 as a common. Marker for diverse progenitors. Stem Cells. 2014;32:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spemann H, Schotté O. ¨Uber xeneplastische Transplantation als Mittel zur Analyse der embryonalen Induction. Naturwissenschaften. 1932;20:463–7.

    Article  Google Scholar 

  38. Streutker CJ, Huizinga JD, Driman DK, et al. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50:176–89. doi:10.1111/j.1365-2559.2006.02493.x.

    Article  CAS  PubMed  Google Scholar 

  39. Thomson AA, Marker PC. Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation. 2006;7:382–92.

    Article  Google Scholar 

  40. Thomson AA, Timms BG, Barton L, et al. The role of smooth muscle in regulating prostatic induction. Development. 2002;129(8):1905–12.

    CAS  PubMed  Google Scholar 

  41. Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130.

    Article  CAS  PubMed  Google Scholar 

  42. Timms BG. Prostate development: a historical perspective. Differentiation. 2008;76:565–77.

    Article  CAS  PubMed  Google Scholar 

  43. Timms BG, Lee CW, Aumüller G, et al. Instructive induction of prostate growth and differentiation by a defined urogenital sinus mesenchyme. Microsc Res Tech. 1995;30:319–32.

    Article  CAS  PubMed  Google Scholar 

  44. Timms BG, Hofkamp LE. Prostate development and growth in benign prostatic hyperplasia. Differentiation. 2011;82:173–83.

    Article  CAS  PubMed  Google Scholar 

  45. Tomlinson DC, Grindley JC, Thomson AA. Regulation of Fgf10 gene expression in the prostate: identification of transforming growth factor-β1 and promoter elements. Endocrinology. 2004;145(4):1988–95.

    Article  CAS  PubMed  Google Scholar 

  46. Ueda S, Mizuki M, Ikeda H, et al. Critical roles of c-Kit tyrosine residues 567 and 719 in stem cell factor–induced chemotaxis: contribution of src family kinase and PI3-kinase on calcium mobilization and cell migration. Blood. 2002;99(9):3342–9.

    Article  CAS  PubMed  Google Scholar 

  47. Vanderwinden JM, Rumessen JJ, de Kerchove d’Exaerde Jr A, et al. Kit-negative fibroblast-like cells expressing SK3, a Ca2+ -activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 2002;310(3):349–58.

    Article  CAS  PubMed  Google Scholar 

  48. Wang XY, Albertí E, White EJ, et al. Igf1r/CD34 immature ICC are putative adult progenitor cells, identified ultrastructurally as fibroblast-like ICC in Ws/Ws rat colon. J Cell Mol Med. 2009;13(9):3528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602–11.

    CAS  PubMed  Google Scholar 

  50. Zheng Y, Bai CE, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6(1):45–9. doi:10.1586/ers.11.91.

    Article  PubMed  Google Scholar 

Download references

Funding

The São Paulo Research Foundation (FAPESP), grant numbers 2013/15939-0 and 2013/16443-9, and the CNPq Brazilian National Research and Development Council (CNPq), grant number 301596/2011-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião R. Taboga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sanches, B.D.A., Corradi, L.S., Vilamaior, P.S.L., Taboga, S.R. (2016). Paracrine Signaling in the Prostatic Stroma: A Novel Role for the Telocytes Revealed in Rodents’ Ventral Prostate. In: Wang, X., Cretoiu, D. (eds) Telocytes. Advances in Experimental Medicine and Biology, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-10-1061-3_13

Download citation

Publish with us

Policies and ethics