Skip to main content

Selenium Pollution in the Marine Environment and Marine Bacteria in Selenium Bioremediation

  • Chapter
  • First Online:

Abstract

Selenium (Se), a metalloid, is a micronutrient essential to biological systems at lower concentrations but becomes toxic as the level increases. Among the soluble forms of Se, selenite is more toxic than selenate to most living organisms. Selenium pollution is a global phenomenon and is associated with a wide range of human activities, from basic agricultural practices to the modern industrial processes that increase the threat of widespread impacts to aquatic life. Soluble forms of selenium, being mobile, reach groundwaters, whereas other static forms remain in soils. Aquatic organisms living in waters contaminated with Se or wildlife consuming plants from selenium-rich soils may be harmed as they accumulate a level of selenium higher than required by their bodies. Although selenium may prove very risky, resulting in long-term serious effects on aquatic life and fishery resources, selenium contamination in the aquatic environment often goes unnoticed by environmental biologists. The permissible level of total selenium in the aquatic environment is about 2 μg/l. To avoid adverse effects on marine aquatic life, the drainage water should be treated to minimize selenium content before it flows into rivers. The conventional physicochemical methods employed in selenium removal, although effective, may prove to be quite expensive. Recent studies suggest the use of microbiological resources to detoxify selenium to be the most simple and economical method. Science is advancing with newer approaches to tackle this problem of selenium pollution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Banuelos GS (2001) The green technology of selenium phytoremediation. Biofactors 14(1-4):255–260

    Article  CAS  Google Scholar 

  • Banuelos GS, Lin ZQ, Wu L, Terry N (2002) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17(4):291–306

    Article  CAS  Google Scholar 

  • Blum SJ, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducens sp. nov.: two haloalkaliphiles from Mono Lake, California which respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Brix KV, DeForest DK, Cardwell RD, Adams WJ (2004) Derivation of a chronic site-specific water quality standard for selenium in the Great Salt Lake, Utah, USA. Environ Toxicol Chem 23:606–612

    Article  CAS  Google Scholar 

  • Burk RF (1994) Selenium in biology and human health. Springer, New York, p 221. ISBN 978-1461275978

    Book  Google Scholar 

  • Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Nunan KM, Macy JM (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62(9):3298–3303

    CAS  Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM, de Sousa PAR, Melo DFO, Coelho NMM (2015) Bioremediation of polluted waters using microorganisms. In: Shiomi N (ed) Advances in bioremediation of wastewater and polluted soil. Sci Technol Med open access doi: 10.5772/60770

  • Cutter GA, Bruland KW (1984) The marine biogeochemistry of selenium: a re-evaluation. Am Soc Limnol Oceanogr 29(6):1179–1192

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactants of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890

    Article  CAS  Google Scholar 

  • Davis CD, Tsuji PA, Milner JA (2012) Selenoproteins and cancer prevention. Annu Rev Nutr 32:73–95

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • DeMoll-Decker H, Macy JM (1993) The periplasmic nitrite reductase of Thauera selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–327

    CAS  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories 9:52–52

    Article  Google Scholar 

  • Dietz R, Riget F, Born EW (2000) An assessment of selenium to mercury in Greenland marine animals. Sci Total Environ 245:15–24

    Article  CAS  Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soils and bacterial cultures. Environ Sci Technol 32:3749–3755

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S–1491S

    Article  CAS  Google Scholar 

  • Fan TW-M, Higashi RM (1998) Biochemical fate of selenium in microphytes: natural bioremediation by volatilization and sedimentation in aquatic environments. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York, pp 545–563

    Google Scholar 

  • Fan TW-M, Higashi RM (2000) Microphyte-mediated selenium biogeochemistry and its role in in situ selenium bioremediation. In: Terry N, Banuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 283–302

    Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8(1):81–110

    Article  Google Scholar 

  • Finch JM, Turner RJ (1996) Effects of selenium and vitamin E on the immune responses of domestic animals. Res Vet Sci 60:97–106

    Article  CAS  Google Scholar 

  • Frankenberger WTJ, Arshad M (2001) Bioremediation of selenium-contaminated sediments and water. Biofactors 14(1-4):241–254

    Article  CAS  Google Scholar 

  • Frankenberger WTJ, Benson S (1994) Selenium in the environment. Dekker, New York, 472 pp. ISBN 0-8247-8993-8

    Google Scholar 

  • Fulekar MH, Pathak B, Kale RK (2014) Nanotechnology: perspective for environmental sustainability. In: Fulekar MH, et al (eds) Environment and sustainable development, vol 12. Springer, New Delhi, pp 87–114

    Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    Article  CAS  Google Scholar 

  • Herbel MJ, Blum JS, Borglin S, Oremland RS (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    Article  CAS  Google Scholar 

  • Hesketh J (2008) Nutrigenomics and selenium: gene expression patterns, physiological targets, and genetics. Annu Rev Nutr 28:157–177

    Article  CAS  Google Scholar 

  • Higashi RM, Rejmankova EJ, Gao S, Fan TWM (2003) Mitigating selenium ecotoxic risk by combining food-chain breakage with natural remediation. University of California Salinity/Drainage Program Annual Report

    Google Scholar 

  • Higashi RM, Cassel TA, Skorupa JP, Fan TWM (2005) Remediation and bioremediation of selenium contaminated waters. In: Lehr JH, Keeley J (eds) Water encyclopedia: water quality and resource development. Wiley, Hoboken, pp 355–360

    Google Scholar 

  • Janz DM, DeForest DK, Brooks ML et al (2010) Selenium toxicity to aquatic organisms. In: Chapman PM, Adams WJ, Brooks ML (eds) Ecological assessment of selenium in the aquatic environment. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 139–230

    Google Scholar 

  • Keith GS (2002) Development of aquatic life criteria for selenium: a regulatory perspective on critical issues and research needs. Aquat Toxicol 57:101–113

    Article  Google Scholar 

  • Lee E (1989) Current options in treatment of agricultural drainage water. In: Huntley ME (ed) Biotreatment of agricultural wastewater. CRC Press, Boca Raton, pp 33–45

    Google Scholar 

  • Lemly AD (1993) Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess 28:83–100

    Article  CAS  Google Scholar 

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  CAS  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56

    Article  CAS  Google Scholar 

  • Levine VE (1924) The reducing properties of microorganisms with special reference to selenium compounds. J Bacteriol 10:217–263

    Google Scholar 

  • Li X, Xu H, Chen Z, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater Article ID 270974, 16 pages, doi:10.1155/2011/270974

  • Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, Tong ZH, Yu HQ (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735. doi:10.1038/srep03735

    Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  Google Scholar 

  • Macy JM, Lawson S, DeMoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594

    Article  CAS  Google Scholar 

  • Maiers DT, Wichlacz PL, Thompson DL, Bruhn DF (1988) Selenate reduction by bacteria from a selenium-rich environment. Appl Environ Microbiol 54(1):2591–2593

    CAS  Google Scholar 

  • Martens DA (2003) Selenium. In: Stewart BA, Howel TA (eds) Encyclopedia of water science. Dekker, New York, pp 840–842. ISBN 0-8247-4241-9

    Google Scholar 

  • Mayland H (1994) Selenium in plant and animal nutrition. In: Frankenberger WT Jr, Benson S Jr (eds) Selenium in the environment. Dekker, New York, pp 29–45

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Scheper T (ed) Adv Biochem Eng Biotechnol 78:97–123

    Google Scholar 

  • Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311

    Article  CAS  Google Scholar 

  • Mistry HD, Pipkin FB, Redman CW (2012) Selenium in reproductive health. Am J Obstet Gynecol 206:21–30

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Rad AC (2011) Application of nano-particles of Euphorbia macroclada for bioremediation of heavy metal polluted environments. Int Conf Nanotechnol Biosens IPCBEE 25:16–24

    Google Scholar 

  • Muir D, Braune B, DeMarch B, Norstrom R, Wagemann R, Lockhart L, Hargrave B, Bright D, Addison R, Payne J, Reimer K (1999) Spatial and temporal trends and effects of contaminants in the Canadian Arctic marine ecosystem: a review. Sci Total Environ 230:83–144

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong CN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  CAS  Google Scholar 

  • Nagpal NK, Lands and Parks (2001) Ambient water quality guidelines for selenium: overview. Environment Protection Division, British Columbia Ministry of Environment. ISBN 0-7726-4626-0

    Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psychiatry 12(4):270–282

    Google Scholar 

  • Ohlendorf HM (2002) The birds of Kesterson Reservoir: a historical perspective. Aquat Toxicol 57(1-2):1–10

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  Google Scholar 

  • Parkman H, Hultberg H (2002) Occurrence and effect of Selenium in the environment–a literature review. IVL-report B1486, IVL Swedish Environmental Research Institute

    Google Scholar 

  • Parulekar K, Naik M (2015) Isolation of selenite and tellurite reducing bacteria from Mandovi estuary and its potential for synthesis of selenium and tellurium nanoparticles. MSc dissertation, Department of Microbiology, Goa University

    Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241, 55

    Article  CAS  Google Scholar 

  • Rech S, Macy JM (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two different enzymes. J Bacteriol 174:7316–7320

    CAS  Google Scholar 

  • Reilly C (2006) Selenium in food and health, 2nd edn. Springer, New York. ISBN 978-0-387-33243-7

    Google Scholar 

  • Salam MA (2013) Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: kinetic and thermodynamic studies. Int J Environ Sci Technol 10(4):677–688

    Article  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297

    Article  CAS  Google Scholar 

  • Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12:353–366

    Article  CAS  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Ind J Pharmacol 43(3):246–253

    Article  CAS  Google Scholar 

  • Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    Google Scholar 

  • Terry N, Zayed A (1998) Phytoremediation of selenium. In: Frankenberger WT, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York, pp 633–655

    Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110

    Article  CAS  Google Scholar 

  • Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13(2):102–108

    Article  CAS  Google Scholar 

  • Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553–1558

    CAS  Google Scholar 

  • UNEP, GESAMP (1988) Arsenic, mercury and selenium in the marine environment. UNEP regional seas reports and studies no. 92, GESAMP report and studies no. 28. www.unep.org/regionalseas/publications/reports/RSRS/pdfs/rsrs092.pdf

  • Vriens B, Lenny HE, Winkel M, Lenz MB (2014) Assessing global cycling of selenium: Analytical tools to quantify volatile species and their fluxes. In: Banuelos GS, Zhi-Qing L, Xuebin (eds) Selenium in the environment and human health. CRC Press, Roca Baton

    Google Scholar 

  • Young RA (2005) Toxicity profiles: toxicity summary for cadmium. Risk Assessment Information System (RAIS), University of Tennessee. rais.ornl.gov/tox/profiles/cadmium.shtml

  • Yu JG, Zhao XH, Yu LY, Jiao FP, Jiang JH, Chen XQ (2014) Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J Radioanal Nucl Chem 299:1155–1163. doi:10.1007/s10967-013-2818y

    Article  CAS  Google Scholar 

  • Zhuang W, Gao X (2013) Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status. Mar Pollut Bull 76:128–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshangy S. Charya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Charya, L.S. (2017). Selenium Pollution in the Marine Environment and Marine Bacteria in Selenium Bioremediation. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_14

Download citation

Publish with us

Policies and ethics