Skip to main content

Applications of Siderophore Producing Marine Bacteria in Bioremediation of Metals and Organic Compounds

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Siderophores are chelating agents that are produced by bacteria and fungi for iron uptake under its limiting conditions. Low iron content is a peculiar feature of marine ecosystems. Marine microorganisms, like their terrestrial counterparts, successfully overcome iron limitation by production of siderophores. However, marine siderophores structurally differ from their terrestrial counterparts. Microbial siderophores have been known to facilitate heavy metal sequestration and also play a vital role in organic compound degradation. Therefore, such siderophores have potential for bioremediation of metal and organic compound polluted areas. This chapter focuses on the potential use of siderophore-producing marine bacteria in remediation of metal and organic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM, Christoffersen P, Tirendi F (1993) The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. J Exp Mar Biol Ecol 171:201–223

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Arun AB, Sridhar KR (2004) Symbiotic performance of fast growing rhizobia isolated from the coastal sand dune legumes of west coast of India. Biol Fertil Soils 40:435–439

    Article  Google Scholar 

  • Arun AB, Beena KR, Raviraja NS, Sridhar KR (1999) Coastal sand dunes—a neglected ecosystem. Curr Sci 77:19–21

    Google Scholar 

  • Banik S, Das KC, Islam MS, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng 2(1):1035

    Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  CAS  Google Scholar 

  • Braud A, Hannauer M, Mislin GLA, Schalk IJ (2009) The pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191(11):3517–3525

    Article  CAS  Google Scholar 

  • Buensanteai N, Yuen GY, Prathuangwong S (2008) The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J Agric Sci 41:101–116

    Google Scholar 

  • Cao B, Geng A, Loh KC (2008) Induction of ortho and meta cleavage pathways in Pseudomonas in biodegradation of high benzoate concentration: MS identification of catabolic enzymes. Appl Microbiol Biotechnol 81:99–107

    Article  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798

    Article  CAS  Google Scholar 

  • De Sousa T, Bhosle S (2012) Implications of benzoate induced alterations in cell morphology and physiology in Pseudomonas aeruginosa TMR2.13 for potential application in bioremediation and monitoring approaches. J Bioremed Biodegrad S1:008

    Google Scholar 

  • Dinkla IJT, Gabor EM, Janssen DB (2001) Effects of iron limitation on the degradation of toluene by pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol 67:3406–3412

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan. Scientific World Journal 5:501–509

    Article  CAS  Google Scholar 

  • Gaonkar T (2015) Eubacterial siderophores and factors modulating their production. In: Borkar S (ed) Bioprospects of Eubacteria: coastal ecosystems of Goa. Springer International Publishing Switzerland, p 25–38

    Google Scholar 

  • Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93:1835–1843. http://dx.doi.org/10.1016/j.chemosphere.2013.06.036

  • Gaonkar T, Nayak P, Garg S, Bhosle S (2012) Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. Scientific World Journal 2012:1–8

    Article  Google Scholar 

  • Garrison JM, Crumbliss AL (1987) Kinetics and mechanism of aluminium (III) siderophore ligand exchange: mono (deferriferrioxamine B) aluminium (III) formation and dissociation in aqueous acid solution. Inorg Chim Acta 138:61–65

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res 33:951–960

    Article  CAS  Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101:207–216

    CAS  Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    CAS  Google Scholar 

  • Inoue H, Takimura O, Kawaguchi K, Nitoda T, Fuse H, Murakami K, Yamaoka Y (2003) Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis. Appl Environ Microbiol 69:878–883

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Zhejiang Univ Sci B 8:192–207

    Article  CAS  Google Scholar 

  • Khanolkar D, Dubey SK, Naik MM (2015a) Tributyltin chloride (TBTCl)- enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain. Arch Environ Contam Toxicol. doi:10.1007/s00244-010-0120-9

    Google Scholar 

  • Khanolkar D, Dubey SK, Naik MM (2015b) Biotransformation of tributyltin chloride to less toxic dibutyltin dichloride and monobutyltin trichloride by Klebsiella pneumonia strain SD9. Int Biodeterior Biodegrad 104:212–218

    Google Scholar 

  • Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO (2008) Organisation of metabolic pathways and molecular genetic mechanisms of xenobiotic degradation in microorganisms: a review. Appl Biochem Microbiol 44:117–135

    Article  CAS  Google Scholar 

  • Krieg RN, Holt GJ (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams &Wilkins, Baltimore, USA

    Google Scholar 

  • Mishra VK, Kumar A (2012) Plant growth promoting and phytostimulatory potential of Bacillus Subtilis and Bacillus Amyloliquefaciens. ARPN J Agric Biol Sci 7:509–518

    Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3:94–99

    CAS  Google Scholar 

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414

    Article  CAS  Google Scholar 

  • Norris JR, Ribbons DW (1971) Methods in microbiology, vol 6A. Academic Press, London

    Google Scholar 

  • Nozaki M, Ishimura Y (1974) Oxygenases. In: Neilands JB (ed) Microbial iron metabolism, 1st edn. Academic Press, New York, pp 417–441

    Chapter  Google Scholar 

  • Park SH, Ko YJ, Kim CK (2001) Toxic effects of catechol and 4-chlorobenzoate stresses on bacterial cells. J Microbiol 39(3):206–212

    CAS  Google Scholar 

  • Prasad MN, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  CAS  Google Scholar 

  • Raghavan TM, Furtado I (2000) Tolerance of an estuarine halophilic archaebacterium to crude oil and constituent hydrocarbons. Bull Environ Contam Toxicol 65:725–731

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad M, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Schwyn B, Neiland JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sengupta A, Chaudhuri S (1991) Ecology of heterotrophic dinitrogen fixation in the rhizosphere of mangrove plant community at the Ganges river estuary in India. Oecologia 87:560–564

    Article  Google Scholar 

  • Shamim K, Naik MM, Pandey A, Dubey SK (2012) Isolation and identification of Aeromonas caviae strain KS-1 as TBTC –and lead-resistant estuarine bacteria. Environ Monit Assess. doi:10.1007/s10661-012-2940-2

    Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  Google Scholar 

  • Sneath AHP, Mair SN, Sharpe EM, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2, Williams and Wilkins Bacteriology Symposium. Academic Press, London

    Google Scholar 

  • Song J, Sung J, Kim YM, Zylstra GJ, Kim E (2000) Roles of the meta- and the ortho-Cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. J Microbiol 38:245–249

    CAS  Google Scholar 

  • Staijen IE, Witholt (1998) Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains. Biotechnol Bioeng 57:228–237

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Zeyaullah M, Abdelkafe AS, Zabya WB, Ali A (2009) Biodegradation of catechols by micro-organisms – a short review. Afr J Biotechnol 8:2916–2922

    CAS  Google Scholar 

Download references

Acknowledgement

Authors wish to thank Prof. Saroj Bhosle, Dept of Microbiology, Goa University for her valuable guidance to carry out this work. Fellowship provided by MoES, Delhi, to Dr. Teja Gaonkar to carry out the research work is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teja Gaonkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gaonkar, T., Borkar, S. (2017). Applications of Siderophore Producing Marine Bacteria in Bioremediation of Metals and Organic Compounds. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_11

Download citation

Publish with us

Policies and ethics