Skip to main content

Semiconducting Nanoparticles or Quantum Dots for Theranostics

  • Chapter
  • First Online:
Introduction to Nanotheranostics

Abstract

Semiconductor colloidal nanocrystals are called “Quantum Dots” (QDs). QDs can be obtained when the semiconductor crystals are brought to a smaller diameter which is smaller than the Bohr exciton radius of the bulk material. QDs have a characteristic luminescence with nanoparticle size ranging from 3 to 10 nm. Compared to the conventional organic dyes, QDs have unique properties such as optical, electronic, absorption coefficients, superior signal brightness, resistance to photo bleaching and simultaneous multi-colour imaging with single excitation source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933

    Article  Google Scholar 

  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjugate chemistry 15:79–86

    Article  Google Scholar 

  • Bhattacharya P, Ghosh S, Stiff-Roberts AD (2004) Quantum dot opto-electronic devices. Annu Rev Mater Res 34:1–40

    Article  Google Scholar 

  • Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  Google Scholar 

  • Crouch D, Norager S, O’Brien P, Park J-H, Pickett N (2003) New synthetic routes for quantum dots. Philos Trans R Soc Lond A Mathematical Phys Eng Sci 361:297–310

    Article  Google Scholar 

  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445

    Article  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    Article  Google Scholar 

  • Duan H, Nie S (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129:3333–3338

    Article  Google Scholar 

  • Fischer HC, Liu L, Pang KS, Chan WC (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16:1299–1305

    Article  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  Google Scholar 

  • Hanaki K-I, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501

    Article  Google Scholar 

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  Google Scholar 

  • Koole R, Mulder WJ, Van Schooneveld MM, Strijkers GJ, Meijerink A, Nicolay K (2009) Magnetic quantum dots for multimodal imaging. Wiley Interdisc Rev Nanomed Nanobiotechnol 1:475–491

    Article  Google Scholar 

  • Kortshagen U (2009) Nonthermal plasma synthesis of semiconductor nanocrystals. J Phys D Appl Phys 42:113001

    Article  Google Scholar 

  • Langel U (2002) Cell-penetrating peptides: processes and applications. CRC press

    Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction. Nat Biotechnol 22:198–203

    Article  Google Scholar 

  • Lieleg O, López-García M, Semmrich C, Auernheimer J, Kessler H, Bausch AR (2007) Specific integrin labeling in living cells using functionalized nanocrystals. Small 3:1560–1565

    Article  Google Scholar 

  • Mangolini L, Kortshagen U (2007) Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater 19:2513–2519

    Article  Google Scholar 

  • Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  • Narayanan K, Yen SK, Dou Q, Padmanabhan P, Sudhaharan T, Ahmed S, Ying JY, Selvan ST (2013) Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Scientific reports vol 3

    Google Scholar 

  • Pi X, Kortshagen U (2009) Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals. Nanotechnology 20:295602

    Article  Google Scholar 

  • Pi X, Gresback R, Liptak R, Campbell S, Kortshagen U (2008) Doping efficiency, dopant location, and oxidation of Si nanocrystals. Appl Phys Lett 92:123102

    Article  Google Scholar 

  • Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25:2128–2138

    Article  Google Scholar 

  • Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759–14766

    Article  Google Scholar 

  • Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511

    Article  Google Scholar 

  • Selvan S, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46:2448–2452

    Article  Google Scholar 

  • Smith AM, Dave S, Nie S, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244

    Article  Google Scholar 

  • Smith JD, Fisher GW, Waggoner AS, Campbell PG (2007) The use of quantum dots for analysis of chick CAM vasculature. Microvasc Res 73:75–83

    Article  Google Scholar 

  • Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  Google Scholar 

  • Son A, Dosev D, Nichkova M, Ma Z, Kennedy IM, Scow KM, Hristova KR (2007) Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles. Anal Biochem 370:186–194

    Article  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  Google Scholar 

  • Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 4:409–413

    Article  Google Scholar 

  • Wang G, Gao Y, Huang H, Su X (2010) Multiplex immunoassays of equine virus based on fluorescent encoded magnetic composite nanoparticles. Anal Bioanal Chem 398:805–813

    Article  Google Scholar 

  • Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  Google Scholar 

  • Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19:4655–4672

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Tamil Selvan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Selvan, S.T., Narayanan, K. (2016). Semiconducting Nanoparticles or Quantum Dots for Theranostics. In: Introduction to Nanotheranostics. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-1008-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1008-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1006-4

  • Online ISBN: 978-981-10-1008-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics