Skip to main content

Subchapter-C: Translational Outcome Research with Date Extracts as Functional Food in Diseases Involving Oxi-Flammatory Pathways.

  • Chapter
  • First Online:

Abstract

Fruit of date palm (Phoenix sylvestris L.) is edible and used as an antigeriatric, antioxidant ethnomedicine. In this study, three different types of date extracts, namely methanolic, acidic ethanolic and basic ethanolic, were evaluated for their putative in vitro scavenging effects on reactive oxygen species (ROS) where scavenging of hydroxyl radicals (basic ethanolic > acidic ethanolic > methanolic), superoxide radicals (acidic ethanolic > basic ethanolic > methanolic), and DPPH radical (acidic ethanolic > methanolic > basic ethanolic), [nitric oxide (NO)] (methanolic > acidic ethanolic > basic ethanolic) and inhibition of lipid peroxidation (basic ethanolic > acidic ethanolic > methanolic) were found to occur in a dose-dependent manner. Their flavonoid and phenolic contents proved to be the source of this potent free radical scavenging activity and indicated a direct correlation with their total antioxidant capacity. On human embryonic kidney cell line (HEK) and murine RAW macrophages, bacterial lipopolysaccharide (LPS)-induced inflammation, the date extracts applied therapeutically inhibit intracellular oxidative stress significantly. This reinstatement of cellular homeostasis presumably occurs via mitochondrial pathways.

The work have been published as:

(1) Mukherjee, K., Paul, P., and Ray Banerjee, E. Free radical scavenging activities of date palm (Pheonix sylvestris) fruit extracts. (2014) Natural Products Chemistry & Research. 2:151. Doi:10.4172/2329-6836.1000151.

(2) Mukherjee, K., Paul, P., and Ray Banerjee, E. Evaluation of date palm (Phoenix sylvestris) fruit extracts as functional food. (2014) International Journal of Science, Engineering and Technology. 3(11): 1-8. ISSN: 2277-1581.

(3) Das, R., Paul, P., Mukherjee, K., Mitra, S., Singh, U.P., and Ray Banerjee, E. Anti-Oxiflammatory profile of date extracts (Phoenix sylvestris). (2015) Biomedical Research and Therapy. 2(5): 15-38. DOI: http://dx.doi.org/10.15419/bmrat.v2i5.79, (ISSN: 2198-4093).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crunkhon P, Meacock S. Mediators of the inflammation induced in the rat paw by carrageenan. Br J Pharmacol. 1971;42:392–402.

    Article  Google Scholar 

  2. Winter CA, Risley E, Nuss G. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.

    Article  CAS  PubMed  Google Scholar 

  3. Vinegar R, Schreiber W, Hugo R. Biphasic development of carrageenan oedema in rats. J Pharmacol Exp Ther. 1969;66:96–103.

    Google Scholar 

  4. Robbins SL, Cortran RS. Acute and chronic inflammation. In: Pathologic basis of disease. vol 7, pp 47–87. Elsevier Publication; 2004.

    Google Scholar 

  5. Mohan H. Inflammation and healing. In: Textbook of pathology. pp 114–121. New Delhi: Jaypee Publication; 2002.

    Google Scholar 

  6. Chatpaliwar VA, Johrapurkar AA, Wanjari MM, Chakraborty RR, Kharkar VT. Anti-inflammatory activity of martynia diandra glox. Indian Drugs. 2002;39:543–5.

    Google Scholar 

  7. Amann R, Schuligoi R, Lanz I, Donnerer J. Histamine induced edema in the rat paw-effect of capsaicin denervation and a cgrp receptor antagonist. Eur J Pharmacol. 1995;279:227–31.

    Article  CAS  PubMed  Google Scholar 

  8. Dray A. Inflammatory mediators of pain. Br J Anesth. 1995;75:25–131.

    Article  Google Scholar 

  9. Whittle BA. The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesic. Br J Pharmacol Chemother. 1964;22:24–253.

    Article  Google Scholar 

  10. Miles AA, Miles E. Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol. 1992;118:228–57.

    Article  Google Scholar 

  11. Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. J Nat Prod. 2001;64:892–5.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez AC, Marcelo EL, Marco AO, Moacyr M. Differential responses of superoxide dismutase in freezing resistant Solanum curtibolum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci. 2001;160:505–15.

    Article  CAS  PubMed  Google Scholar 

  13. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44:276–87.

    Article  CAS  PubMed  Google Scholar 

  14. Chung SK, Osawa T, Kawakishi S. Hydroxyl radical scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem. 1997;61:118–23.

    Article  CAS  Google Scholar 

  15. Ohkowa M, Ohisi N, Yagi K. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  Google Scholar 

  16. Ruberto G, Baratta MT, Deans SG, Dorman HJD. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000;66:687–93.

    Article  CAS  PubMed  Google Scholar 

  17. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41.

    Article  CAS  PubMed  Google Scholar 

  18. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995;322(2):339–46.

    Google Scholar 

  19. Naik GH, Priyadarsini KI, Satav JG, Banavalikar MM, Sohoni PP, Biyani MK, Mohan H. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. 2003;63:97–104.

    Article  CAS  PubMed  Google Scholar 

  20. Gutteridge MC. Reactivity of hydroxyl and hydroxyl radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. Biochem J. 1984;224:761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gutteridge MC. Ferrous salt promoted damage to deoxyribose and benzoate. Biochem J. 1987;243:709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ames BN. Dietary carcinogens and anticarcinogens—oxygen radicals and degenerative diseases. Science. 1983;221:1256–64.

    Article  CAS  PubMed  Google Scholar 

  23. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role of inflammatory disease and progression to cancer. Biochem J. 1996;313:17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopez-Velez M, Martinez-Martinez F, Del Valle-Ribes C. The study of phenolic compounds as natural antioxidants in wine. Crit Rev Food Sci Nutr. 2003;43:233–44.

    Google Scholar 

  25. Roginsky V. Chain breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch Biochem Biophys. 2003;414:261–70.

    Article  CAS  PubMed  Google Scholar 

  26. Mohamed DA, Al-Okbi SY. In vitro evaluation of antioxidant activity of different extracts of Phoenix dactylifera L. fruits as functional foods. Deutsche Lebensmittel Rundschau. 2005;101:305–8.

    Google Scholar 

  27. Barh D, Mazumdar BC. Comparative nutritive values of palm saps before and after their partial fermentation and effective use of wild date (Phoenix sylvestris Roxb.) sap in treatment of anemia. Res J Med Med Sci. 2008;3:173–6.

    Google Scholar 

  28. Ishurd O, Ali Y, Wei W, Bashir F, Ali A, Ashour A, Pana Y. An alkali-soluble heteroxylan from seeds of Phoenix dactylifera L. Carbohydr Res. 2003;338:1609–12.

    Article  CAS  PubMed  Google Scholar 

  29. Hussein MM, Wafaa A. Helmy, Salem HM. Biological activities of some galactomannans and their sulfated derivatives. Phvtochemistry. 1998;48:479–84.

    Google Scholar 

  30. Al-Shahib W, Marshall RJ. The fruit of the date: its possible use as the best food for the future? Int J Food Sci Nut. 1993;54:247–59.

    Article  Google Scholar 

  31. Heftmann E, Bennett RD. Identification of estrone in date seeds by thin layer chromatography. Naturwissenschaften. 1965;52:431–8.

    Article  CAS  Google Scholar 

  32. Bennett RD, Heftmann E. Isolation of Estrone and cholesterol from the date Phoenix dactylifera. Phytochemistry. 1966;5:231–5.

    Article  CAS  Google Scholar 

  33. Mahran GH, Abdul-Wahab SM, Attia AM. A phytochemical study of date pollen. Planta Med. 1976;29:171–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tabeta S, Uehare IO, Zahid M, Zhou H, Yoshioka P, Yuanjiang. α-D-glucan structure. Carbohydr Res. 2002;337:1325–8.

    Google Scholar 

  35. Biglari F, Abbas FM, AlKarkhi AME. Antioxidant activity and phenolic content of various date (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107:1636–41.

    Google Scholar 

  36. Ziouti AC, Modafar EL, Fleuriet AS, Boustani EL, Macheix JJ. Phenolic compounds in date cultivars sensitive and resistant to Fusarium oxysporum. Biologia Plant. 1996;38:451–7.

    Article  CAS  Google Scholar 

  37. Hong YJ, Tomas-Barberan FA, Adel A, Kader S, Alyson E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). J Agric Food Chem. 2006;54:2405–411.

    Google Scholar 

  38. Ishurda O, John FK. The anti-cancer activity of polysaccharide prepared from Libyan dates (Phoenix dactylifera L.). Carbohydr Polym. 2005;59:531–5.

    Article  Google Scholar 

  39. Abdulla Y, Al-Taher. Possible anti-diarrhoeal effect of the date (Phoenix Dactylifera L.) spathe aqueous extract in rats. Sci J King Faisal Univ (Basic and Appl Sci). 2008;9:1429–35.

    Google Scholar 

  40. Al-Qarawi AA, Ali BH, Al-Mougy SA, Mousa HM. Gastrointestinal transit in mice treated with various extracts of date (Phoenix dactylifera L.). Food Chem Toxicol. 2003;41:37–9.

    Article  CAS  PubMed  Google Scholar 

  41. Vayalil PK. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J Agric Food Chem. 2002;50:610–17.

    Google Scholar 

  42. Mohamed BA, Nabil AH, Hanan AS. Protective effects of extract from dates (Phoenix Dactylifera L.) and ascorbic acid on thioacetamide-induced hepatotoxicity in rats. Iran J Pharm Res. 2008;7:193–201.

    Google Scholar 

  43. Javanmardi J, Stushno C, Locke E, Vivanco JM. Antioxidant activity and total phenolic content of Iranian Ocimumaccessions. Food Chem. 2003;83:547–50.

    Article  CAS  Google Scholar 

  44. Filippin LI, Vercelino R, Marroni NP, Xavier RM. Redoxsignalling and the inflammatory response in rheumatoid arthritis. Clin. Exp Immunol. 2008;152(3):415–22.

    Google Scholar 

  45. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol. 2004;251:261–8. doi:10.1111/j.1365-2249.2008.03634.x.

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Gusdon AM, Thayer TC, Mathews CE. Role of increased ROS dissipation in prevention of T1D. Ann N Y Acad Sci. 2008;150:157–66.

    Article  Google Scholar 

  47. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kanayama A, Miyamoto Y. Apoptosis triggered by phagocytosis related oxidative stress through FLIPS down-regulation and JNK activation. J Leukoc Biol. 2007;82:1344–52.

    Article  CAS  PubMed  Google Scholar 

  49. Morgenstern DE, Gifford MA, Li LL, Doerschuk CM, Dinauer MC. Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med. 1997;185:207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 1999;10:29–38.

    Article  CAS  PubMed  Google Scholar 

  51. Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu ZG. Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress induced activation of the MAP kinase JNK. EMBO Rep. 2006;7:622–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ena Ray Banerjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ray Banerjee, E. (2016). Subchapter-C: Translational Outcome Research with Date Extracts as Functional Food in Diseases Involving Oxi-Flammatory Pathways.. In: Perspectives in Translational Research in Life Sciences and Biomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-10-0989-1_15

Download citation

Publish with us

Policies and ethics