Skip to main content

Spectral Theory

  • Chapter
  • First Online:
  • 1896 Accesses

Abstract

To a bounded operator A on normed space X over \({\mathbb K}\), we associate a subset of \({\mathbb K}\), known as the spectrum of A. It is intimately related to the invertibility of a specific linear combination of the operator A and the identity operator. Eigenvalues and approximate eigenvalues of A form a part of the spectrum of A. Determining the spectrum of a bounded operator is one of the central problems in functional analysis. In case X is a Banach space, we show that the spectrum of a bounded operator A on X is a closed and bounded subset of \({\mathbb K}\). We explore special properties of the spectrum of a compact operator on a normed space. We find relationships between the spectrum of a bounded operator A and the spectra of the transpose \(A'\) and the adjoint \(A^{*}\). They yield particularly interesting results when the operator A is ‘well behaved’ with respect to the adjoint operation. In the last section of this chapter, we show how a compact self-adjoint operator can be represented in terms of its eigenvalues and eigenvectors. This is used in obtaining explicit solutions of operator equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If \({\mathbb K}:={\mathbb C}\), then we must first show that \(\lambda \in {\mathbb R}\). Let \(\mu :=1/\lambda \). Since \(\mu x=-x''\) and \(\overline{\mu }\,\overline{x}=-\overline{x}''\), we obtain \((\mu -\overline{\mu })|x|^2=(\mu -\overline{\mu })x\,\overline{x}=\overline{x}''x-x''\overline{x}\). Hence

    $$ (\mu -\overline{\mu })\int _0^1|x(t)|^2=\int _0^1\big (\overline{x}''(t)x(t)-x''(t)\overline{x}(t)\big )dt =\big (\overline{x}'(t)x(t)-x'(t)\overline{x}(t)\big )\Big |_{t=0}^{t=1}=0, $$

    since \(x(0)=0=x(1)\). If \(x\ne 0\), then \(\mu =\overline{\mu }\), that is, \(\lambda \in {\mathbb R}.\)

  2. 2.

    Using the orthonormality of the eigenvectors \(u_1,u_2,\ldots \) of A, we can give a shorter proof of ‘\(\lambda _n\rightarrow 0\)’ as follows. Assume for a moment that \(\lambda _n\not \rightarrow 0\). Then there is \(\delta >0\), and there are \( n_1<n_2<\cdots \) in \({\mathbb N}\) such that \(|\lambda _{n_k}|\ge \delta \) for all \(k\in {\mathbb N}\), and so

    $$\Vert A(u_{n_k}) - A(u_{n_j})\Vert ^2 = \Vert \lambda _{n_k} u_{n_k} - \lambda _{n_j}u_{n_j}\Vert ^2 = |\lambda _{n_k}|^2 + |\lambda _{n_j}|^2 \ge 2\delta ^2$$

    for all \(k,j\in {\mathbb N}\) with \(k\ne j\) by the Pythagoras theorem (Proposition 2.16(i)). Now \((u_{n_k})\) is a bounded sequence in H, and the sequence \((A(u_{n_k}))\) has no convergent subsequence, which contradicts the compactness of the operator A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balmohan V. Limaye .

Exercises

Exercises

  1. 5.1

    Let X be a normed space, and let \(A\in BL(X)\) be invertible. Then \(\sigma (A^{-1}) = \{ \lambda ^{-1} : \lambda \in \sigma (A) \}.\) In fact, if \(k\in {\mathbb K},\, k\ne 0\), and \(A-kI\) is invertible, then \(A^{-1}\!-k^{-1}I\) is invertible, and \(-k(A-kI)^{-1}A\) is its inverse.

  2. 5.2

    Let X be a normed space, \(A\in BL(X)\), and let p be a polynomial. Then \(\{ p(\lambda ) : \lambda \in \sigma (A) \}\subset \sigma (p(A))\), where equality holds if \({\mathbb K}:= {\mathbb C}\).

  3. 5.3

    Let X be a normed space, and let \(A,B\in BL(X)\). If \(I-AB\) is invertible, then \(I-BA \) is invertible, and \(I+B(I-AB)^{-1}A\) is its inverse. Consequently, \(\sigma (AB)\setminus \{0\}=\sigma (BA)\setminus \{0\}\).

  4. 5.4

    (Gershgorin theorem) Let an \(n\times n\) matrix \(M := [k_{i,j}]\) define an operator \(A\in BL({\mathbb K}^n)\). For \(i=1,\ldots ,n\), let \(r_i:=|k_{i,1}|+\cdots +|k_{i,i-1}|+|k_{i,i+1}|+\cdots +|k_{i,n}|\), and \(D_i := \{k\in {\mathbb K}: | k - k_{i,i}| \le r_i\}\). Then \(\sigma (A)\subset D_1\cup \cdots \cup D_n\). (Note: \(D_1,\ldots , D_n\) are known as the Gershgorin disks of A. They localize the eigenvalues of A.)

  5. 5.5

    Let X be a linear space over \({\mathbb K}\), and let \(A:X\rightarrow X\) be of finite rank. Suppose \(A(x):=g_1(x)x_1+\cdots +g_n(x)x_n\) for all \(x\in X\), where \(x_1,\ldots ,x_n\) are in X and \(g_1,\ldots , g_n\) are linear functionals on X. Let M be the \(n\times n\) matrix \([g_i(x_j)]\). Let \(x\in X\), \(u:=(u(1),\ldots ,u(n))\in {\mathbb K}^n\), and nonzero \(\lambda \in {\mathbb K}\). Then \(A(x)=\lambda x\) and \(u=(g_1(x),\ldots ,g_n(x))\) if and only if \(Mu^t=\lambda u^t\) and \(x=\big (\sum _{j=1}^nu(j)x_j\big )/\lambda \). In this case, x is an eigenvector of A corresponding to \(\lambda \) if and only if \(u^t\) is an eigenvector of M corresponding to \(\lambda \).

  6. 5.6

    Let \(X:=C([a,b])\) with the sup norm, and let A denote the multiplication operator considered in Example 5.6(ii). Then \(\sigma _e(A)\) consists of all \(\lambda \in {\mathbb K}\) such that \(x_{0}(t) = \lambda \) for all t in a nontrivial subinterval of [ab].

  7. 5.7

    (Multiplication operator) Let \(X:=L^2([a,b]), x_0\in L^\infty ([a,b])\), and \(A(x):=\) \(x_0x\) for \(x\in X\). Then \(\sigma _a(A)\) and \(\sigma (A)\) equal the essential range of \(x_0\) consisting of \(\lambda \in {\mathbb K}\) such that \(m(\{t\in [a,b]:|x_0(t)-\lambda |<\epsilon \})>0\) for every \(\epsilon >0\). Also, \(\sigma _e(A)\) is the set of all \(\lambda \in {\mathbb K}\) such that \(m(\{t\in [a,b]:x_{0}(t) = \lambda \}>0\).

  8. 5.8

    Let X be a normed space, and let \(A\in BL(X)\). If \(\lambda \in \sigma _a(A)\), and \(n\in {\mathbb N}\), then \(\lambda ^n\in \sigma _a(A^n)\), and so \(|\lambda |\le \inf \big \{\Vert A^n\Vert ^{1/n}\!:n\in {\mathbb N}\big \}\).

  9. 5.9

    Let X be a normed space, and let \(A\in BL(X)\).

    1. (i)

      If there is \(\alpha >0\) such that \(\Vert A(x)\Vert \le \alpha \Vert x\Vert \) for all \(x\in X\), then \(\sigma _a(A)\) is contained in \(\{k\in {\mathbb K}:|k|\le \alpha \}\).

    2. (ii)

      If there is \(\beta >0\) such that \(\Vert A(x)\Vert \ge \beta \Vert x\Vert \) for all \(x\in X\), then \(\sigma _a(A)\) is contained in \(\{k\in {\mathbb K}:|k|\ge \beta \}\).

    3. (iii)

      If A is an isometry, then \(\sigma _a(A)\) is contained in \(\{k\in {\mathbb K}:|k|=1\}\).

  10. 5.10

    Let \(X:=\ell ^1\), and let \(A(x) := (0, x(1), 2x(2), x(3),2x(4),\ldots )\) for \(x\in X\). Then \(A\in BL(X), \Vert A\Vert =2\), but \(|\lambda |\le \sqrt{2}\) for every \(\lambda \in \sigma (A)\).

  11. 5.11

    (Diagonal operator) Let \(X:=\ell ^p\) with \(p\in \{1,2,\infty \}\), and let \((\lambda _j)\) be a bounded sequence in \({\mathbb K}\). For \(x:=(x(1),x(2),\ldots )\) in X, define \(A(x) := (\lambda _1x(1), \lambda _2x(2), \ldots ) \). Then \(A\in BL(X),\, \Vert A\Vert =\sup \{|\lambda _j|:j\in {\mathbb N}\},\,\sigma _e(A)=\{\lambda _j:j\in {\mathbb N}\}\), while \(\sigma _a(A)\) and \(\sigma (A)\) equal the closure of \(\{\lambda _j:j\in {\mathbb N}\}\).

  12. 5.12

    Let E be a nonempty closed and bounded subset of \({\mathbb K}\). Then there is a diagonal operator \(A\in BL(\ell ^2)\) such that \(\sigma (A)=E\). Further, if \((\lambda _j)\) is a sequence in \({\mathbb K}\) such that \(\lambda _j\rightarrow 0\), then there is a diagonal operator \(A\in CL(\ell ^2)\) such that \(\sigma _e(A)=\{\lambda _j:j\in {\mathbb N}\}\) and \(\sigma (A)=\{\lambda _j:j\in {\mathbb N}\}\cup \{0\}\).

  13. 5.13

    (Neumann expansion) Let X be a Banach space, and let \(A\in BL(X)\). If \(k\in {\mathbb K}\) and \(|k|>\Vert A\Vert \), then \(A-kI\) is invertible,

    $$ (A-kI)^{-1}=-\sum _{n=0}^\infty \frac{A^n}{k^{n+1}}\quad \text {and}\quad \Vert (A-kI)^{-1}\Vert \le \frac{1}{|k|-\Vert A\Vert }. $$

    In particular, if A denotes the right shift operator on \(\ell ^p\) defined in Example 5.12(i), then \((A-kI)^{-1}(y)(j)=-y(j)/k-\cdots -y(1)/k^j\) for \(y\in \ell ^p,\,j\in {\mathbb N}\).

  14. 5.14

    (Left shift operator) Let X denote one of the spaces \(\ell ^1,\ell ^2,\ell ^\infty ,c_0, c\), and define \(B(x) := (x(2), x(3), \ldots )\) for \(x := (x(1), x(2), \ldots )\in X.\) If \(X:=\ell ^1,\, \ell ^2 \,\text {or}\,c_0\), then \(\sigma _{e}(B) = \{\lambda \in {\mathbb K}: |\lambda | < 1 \}\); if \(X:= \ell ^\infty \), then \(\sigma _{e}(B) = \{\lambda \in {\mathbb K}: |\lambda | \le 1 \}\); if \(X:=c\), then \(\sigma _{e}(B) = \{\lambda \in {\mathbb K}: |\lambda | < 1 \} \cup \{1\}\). In all cases, \(\sigma _{a}(B) = \{\lambda \in {\mathbb K}: |\lambda | \le 1\} = \sigma (B).\)

  15. 5.15

    Let \(p\in \{1,2,\infty \}\), and let A be the right shift operator on \(L^p([0,\infty ))\) defined in Exercise 4.22. If \(p\in \{1,2\}\), then \(\sigma _e(A)=\{\lambda \in {\mathbb K}:|\lambda |<1\}\), and if \(p:=\infty \), then \(\sigma _e(A)=\{\lambda \in {\mathbb K}:|\lambda |\le 1\}\). In all cases, \(\sigma _a(A)\) and \(\sigma (A)\) equal \(\{\lambda \in {\mathbb K}:|\lambda |\le 1\}\).

  16. 5.16

    Let X be a nonzero inner product space, and let \(A\in BL(X)\). For nonzero \(x\in X\), let \(q_A(x):=\langle {A(x)},{x} \rangle /\langle {x},{x} \rangle \) and \(r_A(x):=A(x)-q_A(x)x\). The scalar \(q_A(x)\) is called the Rayleigh quotient of A at x, and the element \(r_A(x)\) of X is called the corresponding residual. Then \(r_A(x)\perp x\), and \(\Vert r_A(x)\Vert =\min \{\Vert A(x)-k\,x\Vert :k\in {\mathbb K}\}\). (Note: This is known as the minimum residual property of the Rayleigh quotient.)

  17. 5.17

    Let X be a normed space, and let \(A\in CL(X)\). Then \(\sigma (A)\) is a closed and bounded subset of \({\mathbb K}\). If \(\lambda \in \sigma (A)\), then \(|\lambda |\le \inf \{\Vert A^n\Vert ^{1/n}:n\in {\mathbb N}\}\).

  18. 5.18

    (Weighted-shift operators) Let \(X:=\ell ^p\) with \(p\in \{1,2,\infty \}\), and let \((w_n)\) be a sequence in \({\mathbb K}\) such that \(w_n\rightarrow 0\). For \(x:=(x(1),x(2),\ldots )\in X\), define \(A(x):=(0,w_1x(1),w_2x(2),\ldots )\) and \(B(x):=(w_2x(2),w_3x(3),\ldots )\). Then \(A,\,B\in CL(X)\), and \(\sigma (A)=\sigma (B)=\{0\}\). Further, \(0\in \sigma _e(A)\) if and only if there is \(j\in {\mathbb N}\) such that \(w_j=0\), and then the dimension of the corresponding eigenspace of A is the number of times 0 occurs among \(w_1,w_2,\ldots .\) Also, \(0\in \sigma _e(B)\), and the dimension of the corresponding eigenspace of B is one plus the number of times 0 occurs among \(w_2,w_3,\ldots .\)

  19. 5.19

    (Volterra integration operator) Let \(X := L^{2} ([a,b])\). For \(s,t\in [a,b]\), let \(k(s,t):=1\) if \(t\le s\) and \(k(s,t):=0\) if \(s<t\), and let A denote the Fredholm integral operator on X with kernel \(k(\cdot \,,\cdot )\). Then \(A\in CL(X)\), \(\sigma _{e}(A) = \emptyset \), and \(\sigma _a(A) =\sigma (A)= \{0\}\).

  20. 5.20

    Let \(X := C([0,1])\), and \(Y:= L^{p}([0,1])\) with \(p\in \{1,2,\infty \}\). For \(s,t\in [0,1]\), let \(k(s,t):=\min \{s,t\}\), and let A denote the Fredholm integral operator on X, and on Y, with kernel \(k(\cdot \,,\cdot )\). Then

    $$\sigma _{e}(A) = \{ 4/(2n-1)^{2} \pi ^{2}:n\in {\mathbb N}\} \quad \text {and} \quad \sigma _{a}(A) = \sigma (A) = \sigma _e(A)\cup \{0\}.$$

    Further, the eigenspace corresponding to the eigenvalue \(4/(2n-1)^{2} \pi ^{2}\) of A is \(\mathrm{span\,}\{x_{n}\}, \) where \(x_{n}(s) := \sin (2n-1)\pi s/2,\, 0 \le s \le 1,\) for \(n\in {\mathbb N}\).

  21. 5.21

    (Perturbation by a compact operator) Let X be a normed space, \(A\in BL(X)\), and let \(B\in CL(X)\). Then \(\sigma (A)\setminus \sigma _e(A)\subset \sigma (A+B)\).

  22. 5.22

    Let X be a normed space, \(A\in CL(X)\), and let \(k\in {\mathbb K}\) be nonzero. Then \(A-kI\) is one-one if and only if \(A-kI\) is onto.

  23. 5.23

    Let X be a normed space, \(A\in CL(X)\), and let \(k\in {\mathbb K}\) be nonzero. Then \(R(A-kI)\) is a closed subspace of X. (Compare Lemma 5.19.)

  24. 5.24

    (Fredholm alternative) Let X be a normed space, and let \(A\in CL(X)\). Exactly one of the following alternatives holds.

    1. (i)

      For every \(y\in X\), there is a unique \(x\in X\) such that \(x-A(x)=y\).

    2. (ii)

      There is nonzero \(x\in X\) such that \(x-A(x)=0\).

    If the alternative (i) holds, then the unique solution x of the operator equation \(x-A(x)=y\) depends continuously on the ‘free term’ \(y\in X\). If the alternative (ii) holds, then the solution space of the homogeneous equation \(x-A(x)=0\) is finite dimensional.

  25. 5.25

    Let X be a normed space, and let \(A\in CL(X)\).

    1. (i)

      The homogeneous equation \(x - A(x) = 0\) has a nonzero solution in X if and only if the transposed homogeneous equation \(x' - A'(x') = 0\) has a nonzero solution in \(X'.\) (Note: The solution spaces of the two homogeneous equations have the same dimension, that is, \(\dim Z(I-A')=\dim Z(I-A)\). See [28, Theorem V.7.14 (a)].)

    2. (ii)

      Let \(y\in X\). There is \(x\in X\) such that \(x - A(x) = y\) if and only if \(x'_{j}(y) = 0\) for \(j = 1, \ldots , m,\) where \(\{x'_{1}, \ldots , x'_{m}\}\) is a basis for the solution space of the transposed homogeneous equation \(x' - A'(x') = 0.\) Further, if \(x_{0}\) is a particular solution of the equation \(x - A(x) =y\), then its general solution is given by \(x := x_{0} + k_{1} x_{1} + \cdots + k_{m}x_{m}, \) where \(k_{1}, \ldots , k_{m}\) are in \({\mathbb K}\), and \(\{x_{1}, \ldots , x_{m}\}\) is a basis for the solution space of the homogeneous equation \(x-A(x) = 0.\)

  26. 5.26

    Let X be a normed space, and let \(A\in BL(X)\). Then \(\sigma _e(A)\subset \sigma _e(A'')\) and \(\sigma _a(A)\subset \sigma _a(A'')\), while \(\sigma (A'')=\sigma (A')\subset \sigma (A)\).

  27. 5.27

    Let X be a normed space, \(A\in BL(X)\), and \(\lambda \in \sigma _e(A)\). A nonzero \(x\in X\) is called a generalized eigenvector of A corresponding to \(\lambda \) if there is \(n\in {\mathbb N}\) such that \((A-\lambda I)^n(x)=0\). If H is a Hilbert space, and \(A\in BL(H)\) is normal, then every generalized eigenvector of A is an eigenvector of A.

  28. 5.28

    Let A be a normal operator on a separable Hilbert space H. Then \(\sigma _e(A)\) is a countable set.

  29. 5.29

    Let \(A\in BL(\ell ^2)\) be defined by the infinite matrix \(M:=[k_{i,j}]\). Suppose either M is upper triangular (that is, \(k_{i,j}=0\) for all \(i>j\)) or M is lower triangular (that is, \(k_{i,j}=0\) for all \(i<j\)). Then A is normal if and only if M is diagonal (that is, \(k_{i,j}=0\) for all \(i\ne j\)).

  30. 5.30

    Let H be a Hilbert space, and let \(A\in BL(H)\) be unitary. Then \(\sigma (A)\) is contained in \(\{k\in {\mathbb K}:|k|=1\}\). Further, if \(k\in {\mathbb K}\) and \(|k|\ne 1\), then \(\Vert (A-kI)^{-1}\Vert \le 1/|\,|k|-1 |\).

  31. 5.31

    Let H be a nonzero Hilbert space, and let \(A\in BL(H)\). If \(k\in {\mathbb K}\setminus \overline{\omega (A)}\), and \(\beta :=d\big (k,\overline{\omega (A)}\big )\), then \(A-kI\) is invertible, and \(\Vert (A-kI)^{-1}\Vert \le 1/\beta \). In particular, if A is self-adjoint and \(k\in {\mathbb K}\setminus [m_A,M_A]\), then \(\beta \) is equal to \(|\Im k|\) if \(\Re k\in [m_A,M_A]\), to \(|k-m_A|\) if \(\Re k<m_A\) and to \(|k-M_A|\) if \(\Re k>M_A\). If in fact \({\mathbb K}:={\mathbb R}\), A is self-adjoint, and \(k\in {\mathbb R}\setminus \sigma (A)\), then \(\Vert (A-kI)^{-1}\Vert =1/d\), where \(d:=d(k,\sigma (A))\). (Note: This result also holds if \({\mathbb K}:={\mathbb C}\) and A is normal.)

  32. 5.32

    Let H be a Hilbert space over \({\mathbb C}\). If \(A\in BL(H)\) is self-adjoint, then its Cayley transform\(T(A) := (A-iI)(A+iI)^{-1}\) is unitary and \(1 \not \in \sigma (T(A)).\) Conversely, if \(B\in BL(H)\) is unitary and \(1 \not \in \sigma (B),\) then its inverse Cayley transform \(S(B) := i(I+B) (I-B)^{-1}\) is self-adjoint. Further, \(S(T(A)) = A\) and \(T(S(B)) = B.\) (Note: The function \(z\longmapsto (z-i)(z+i)^{-1}\) maps \({\mathbb R}\) onto \(E:=\{z\in {\mathbb C}:|z|=1\,\text {and}\,z\ne 1\}\), and its inverse function \(w\longmapsto i(1+w)(1-w)^{-1}\) maps E onto \({\mathbb R}\).)

  33. 5.33

    Let A be a self-adjoint operator on a nonzero Hilbert space. Then \(A\ge 0\) if and only if \(\sigma (A)\subset [0,\infty )\). In this case, \( 0 \in \omega (A)\) if and only if \(0 \in \sigma _e (A).\)

  34. 5.34

    Let \({\mathbb K}:={\mathbb R}\), and let \(\theta \in [0,2\pi )\). For \(x:=(x(1),x(2))\in {\mathbb R}^2\), define

    $$A(x):=(x(1)\cos \theta -x(2)\sin \theta , x(1)\sin \theta +x(2)\cos \theta ).$$

    Then \(A^{*}(x):=(x(1)\cos \theta +x(2)\sin \theta , -x(1)\sin \theta +x(2)\cos \theta )\) for \(x\in {\mathbb R}^2\), and A is a unitary operator. Also, \(\sigma (A)=\{1\}\) if \(\theta :=0\), \(\sigma (A)=\{-1\}\) if \(\theta :=\pi \), and \(\sigma (A)=\emptyset \) otherwise.

  35. 5.35

    Let H be a separable Hilbert space over \({\mathbb K}\), and let A be a normal Hilbert–Schmidt operator on H. Let \((\lambda _n)\) be the sequence of nonzero eigenvalues of A, each such eigenvalue being repeated as many times as the dimension of the corresponding eigenspace. Then \(\sum _n|\lambda _n|^2<\infty \).

  36. 5.36

    Let H be a finite dimensional nonzero Hilbert space over \({\mathbb C}\), and let A be in BL(H). Then A is normal if and only if there are orthogonal projection operators \(P_1,\ldots ,P_k\) on H, and distinct \(\mu _1,\ldots ,\mu _k\) in \({\mathbb C}\) such that \(I=P_1+\cdots +P_k\) and \(A=\mu _1P_1+\cdots +\mu _kP_k\), where \(P_iP_j=0\) for all \(i\ne j\).

  37. 5.37

    Let H be a Hilbert space over \({\mathbb K}\), and let \(A\in BL(H) \) be nonzero. Then A is compact and self-adjoint if and only if there are orthogonal projection operators \(P_0,P_1,P_2,\ldots \) on H and distinct \(\mu _1,\mu _2,\ldots \) in \({\mathbb R}\setminus \{0\}\) such that \(x=P_0(x)+P_1(x)+P_2(x)+\cdots \) for all \(x\in H\) and \(A=\mu _1P_1+\mu _2P_2+\cdots \), where \(P_iP_j=0\) for all \(i\ne j\), \(P_1,\,P_2,\ldots \) are of finite rank, and either the set \(\{\mu _1, \mu _2,\ldots \}\) is finite or \(\mu _n\rightarrow 0\).

  38. 5.38

    Let \(H := L^2([0,1])\). For \(s,t\in [0,1]\), let \(k(s,t):=\min \{1-s,1-t\}\), and let A denote the Fredholm integral operator on H with kernel \(k(\cdot \,,\cdot )\). Then \(A(x)=\sum _{n=1}^\infty \lambda _n\langle {x},{u_n} \rangle u_n\) for \(x\in H\), where \(\lambda _n:= 4/(2n-1)^{2} \pi ^{2}\) and \(u_{n}(s) :=\sqrt{2} \cos (2n-1)\pi s/2,\, s\in [0,1]\) and \(n\in {\mathbb N}\).

  39. 5.39

    Let A denote the Fredholm integral operator on \(L^2([0,1])\) with kernel \(k(s,t) := \min \{s,t\}, 0 \le s, t \le 1.\) For \(x \in L^2([0,1])\) and \(n \in {\mathbb N},\) let

    $$ s_n(x) := {\displaystyle {\int _{0}^{1}\!{x(t)\sin (2n - 1)\frac{\pi t}{2}}\,d{m(t)}}}. $$

    Then for every \(x \in L^2([0,1])\),

    $$A(x)(s) = \frac{8}{\pi ^2} \sum ^\infty _{n=1} \frac{s_n(x)}{(2n-1)^2} \sin (2n -1) \frac{\pi s}{2}, \quad s \in [0,1],$$

    where the series on the right side converges in \(L^2([0,1]).\) Let \(y \in L^2([0,1])\).

    1. (i)

      Suppose \(\mu \in {\mathbb K},\,\mu \ne 0\) and \(\mu \ne (2n-1)^2\pi ^2 /4\) for any \(n\in {\mathbb N}\). Then there is a unique \(x \in L^2([0,1])\) satisfying \(x - \mu A(x) = y.\) In fact,

      $$ x(s) = y(s) + 8\mu \sum ^\infty _{n=1} \frac{s_n(y)}{(2n-1)^2\pi ^2 - 4\mu } \sin (2n-1)\frac{\pi s}{2},\quad s\in [0,1]. $$

      Further, \(\Vert x\Vert \le \alpha \Vert y\Vert \), where \(\alpha :=1+4|\mu |/\min _{n\in {\mathbb N}}\{|(2n-1)^2\pi ^2-4\mu |\}\).

    2. (ii)

      Suppose \(\mu := (2n_1 - 1)^2\pi ^2/4\), where \(n_1\in {\mathbb N}\). Then there is x in \(L^2([0,1])\) satisfying \(x - \mu A(x) = y\) if and only if \(s_{n_1}(y) = 0\). In this case,

      $$\begin{aligned} x(s) = y(s)+ & {} \frac{(2n_1-1)^2}{2} \sum _{n \ne n_1} \frac{s_n(y)}{(n-n_1)(n+n_1-1)} \sin (2n-1)\frac{\pi s}{2}\\+ & {} k_1\sin (2n_1 - 1)\frac{\pi s}{2}\quad \text {for}\,s\in [0,1],\,\text {where}\,k_1\in {\mathbb K}. \end{aligned}$$
  40. 5.40

    Let H be a Hilbert space over \({\mathbb K}\), and let \(A\in BL(H)\) be nonzero. Then A is compact if and only if there are countable orthonormal subsets \(\{u_1,u_2,\ldots \}\) and \(\{v_1,v_2,\ldots \}\) of H, and there are positive real numbers \(s_1,s_2,\ldots \) such that \(A(x)= \sum _ns_n\langle {x},{u_n} \rangle v_n\) for all \(x\in H\) with \(s_n\rightarrow 0\) if the set \(\{v_1,v_2,\ldots \}\) is denumerable. In this case, \(A^{*}A(x)= \sum _ns_n^2\langle {x},{u_n} \rangle u_n\) for \(x\in H\), and \(\sum _ns_n^2=\sum _n\Vert A(u_n)\Vert ^2\). In particular, if H is a separable Hilbert space, then A is a Hilbert–Schmidt operator if and only if \(\sum _ns_n^2<\infty \). (Note: The positive real numbers \(s_1,s_2,\ldots \) are called the nonzero singular values of A.)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Limaye, B.V. (2016). Spectral Theory. In: Linear Functional Analysis for Scientists and Engineers. Springer, Singapore. https://doi.org/10.1007/978-981-10-0972-3_5

Download citation

Publish with us

Policies and ethics