Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

  • 2191 Accesses

Abstract

Limitations inherent in failure theories formulated on homogenized description of composite materials are discussed. Failure mechanisms in composite materials, as understood today, are reviewed. Based on this knowledge, arguments are put forth to abandon the classical approach to formulation of failure theories for composite materials, and to instead use a computation-based failure assessment methodology. Such a methodology is proposed. In conjunction with this, the idea of virtual testing to supplement experimental determination of material response characteristics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aroush, D.R.B., Maire, E., Gauthier, C., Youssef, S., Cloetens, P., Wagner, H.: A study of fracture of unidirectional composites using in situ high-resolution synchrotron X-ray microtomography. Compos. Sci. Technol. 66(10), 1348–1353 (2006). doi:10.1016/j.compscitech.2005.09.010

    Article  Google Scholar 

  • Azzi, V.D., Tsai, S.W.: Anisotropic strength of composites. Exp. Mech. 5(9), 283–288 (1965). doi:10.1007/BF02326292

    Article  Google Scholar 

  • Berbinau, P., Soutis, C., Guz, I.: Compressive failure of 0\(^\circ \) unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling. Compos. Sci. Technol. 59(9), 1451–1455 (1999). doi:10.1016/S0266-3538(98)00181-X

    Article  Google Scholar 

  • Budiansky, B.: Micromechanics. Comput. Struct. 16(1–4), 3–12 (1983). doi:10.1016/0045-7949(83)90141-4

    Article  MATH  Google Scholar 

  • Gamstedt, E., Sjögren, B.: Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies. Compos. Sci. Technol. 59(2), 167–178 (1999). doi:10.1016/S0266-3538(98)00061-X

    Article  Google Scholar 

  • Goldenblatt, I.I., Kopnov, V.A.: Strength criteria for anisotropic materials. Izvestia Academy Nauk USSR Mechanika 6, 77–83 (1965)

    Google Scholar 

  • González, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67(13), 2795–2806 (2007). doi:10.1016/j.compscitech.2007.02.001

    Article  Google Scholar 

  • Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980). doi:10.1115/1.3153664

    Article  Google Scholar 

  • Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. Royal Soc. Lond. A: Math., Phys. Eng. Sci. 193(1033), 281–297 (1948). doi:10.1098/rspa.1948.0045

    Article  MathSciNet  MATH  Google Scholar 

  • Hinton, M., Kaddour, A., Soden, P.: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos. Sci. Technol. 62(12–13), 1725–1797 (2002). doi:10.1016/S0266-3538(02)00125-2

    Article  Google Scholar 

  • Hinton, M., Kaddour, A., Soden, P.: A further assessment of the predictive capabilities of current failure theories for composite laminates: comparison with experimental evidence. Compos. Sci. Technol. 64(3–4), 549–588 (2004). doi:10.1016/S0266-3538(03)00227-6. Failure criteria in fibre reinforced polymer composites Part C: additional theories conclusions and recommendations

    Google Scholar 

  • Jelf, P., Fleck, N.A.: Compression failure mechanisms in unidirectional composites. J. Compos. Mater. 26(18), 2706–2726 (1992). doi:10.1177/002199839202601804

    Article  Google Scholar 

  • Kaddour, A., Hinton, M., Soden, P.: A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions. Compos. Sci. Technol. 64(3–4), 449–476 (2004). doi:10.1016/S0266-3538(03)00226-4. Failure criteria in fibre reinforced polymer composites Part C: additional theories conclusions and recommendations

    Google Scholar 

  • Kyriakides, S., Arseculeratne, R., Perry, E., Liechti, K.: On the compressive failure of fiber reinforced composites. Int. J. Solids Struct. 32(6–7), 689–738 (1995). doi:10.1016/0020-7683(94)00157-R. Time dependent problems in mechanics

    Google Scholar 

  • LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23(44), 5130–5147 (2011). doi:10.1002/adma.201101683

    Article  Google Scholar 

  • Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58(7), 1045–1067 (1998). doi:10.1016/S0266-3538(96)00140-6

    Article  Google Scholar 

  • Puck, A., Schürmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 62(12–13), 1633–1662 (2002). doi:10.1016/S0266-3538(01)00208-1

    Article  Google Scholar 

  • Redon, O.: Fatigue damage development and failure in unidirectional and angle-ply glass fibre/carbon fibre hybrid laminates. Master’s thesis, Materials research department, Risø National Laboratory, Roskilde, Denmark (2000)

    Google Scholar 

  • Scott, A., Sinclair, I., Spearing, S., Mavrogordato, M., Hepples, W.: Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Compos. Sci. Technol. 90, 147–153 (2014). doi:10.1016/j.compscitech.2013.11.004

    Article  Google Scholar 

  • Soden, P., Hinton, M., Kaddour, A.: A comparison of the predictive capabilities of current failure theories for composite laminates. Compos. Sci. Technol. 58(7), 1225–1254 (1998). doi:10.1016/S0266-3538(98)00077-3

    Article  Google Scholar 

  • Talreja, R.: Assessment of the fundamentals of failure theories for composite materials. Compos. Sci. Technol. 105, 190–201 (2014). doi:10.1016/j.compscitech.2014.10.014

    Article  Google Scholar 

  • Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Google Scholar 

  • Zhuang, L., Talreja, R., Varna, J.: Tensile failure of a unidirectional composite from a local fracture plane, to be submitted (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Talreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Talreja, R. (2016). On Failure Theories for Composite Materials. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics