Skip to main content

Effect of Geometric Dimension on the Dissipative Property of the Structures Consisting of NiTi Shape Memory Alloy Wires

  • Chapter
  • First Online:
  • 1947 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 60))

Abstract

Effect of the geometric dimension of NiTi shape memory alloy (SMA) wires on the dissipative property of their structural components is predicted by a physical mechanism-based thermo-mechanically coupled constitutive model in this work. Two types of NiTi SMA structural components, i.e., the single-wire and multi-wire ones, are considered. The dissipative property of the component is measured by its accumulated dissipation energy obtained during cyclic deformation. The calculated results show that at low (lower than \(1\times 10^{-5}\)/s), moderate (from \(5\times 10^{-5}\)/s to \(1.5\times 10^{-4}\)/s), and high strain rates (higher than \(5\times 10^{-4}\)/s), the accumulated dissipation energy decreases, changes non-monotonically, and increases with the increasing number of wires, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Auricchio, F., Marfia, S., Sacco, E.: Modelling of SMA materials: training and two way memory effects. Comput. Struct. 81(24–25), 2301–2317 (2003). doi:10.1016/S0045-7949(03)00319-5

    Article  Google Scholar 

  • Auricchio, F., Reali, A., Stefanelli, U.: A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plast. 23(2), 207–226 (2007). doi:10.1016/j.ijplas.2006.02.012

    Article  MATH  Google Scholar 

  • Delville, R., Malard, B., Pilch, J., Sittner, P., Schryvers, D.: Microstructure changes during non-conventional heat treatment of thin Ni-Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater. 58(13), 4503–4515 (2010). doi:10.1016/j.actamat.2010.04.046

    Article  Google Scholar 

  • Delville, R., Malard, B., Pilch, J., Sittner, P., Schryvers, D.: Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int. J. Plast. 27(2), 282–297 (2011). doi:10.1016/j.ijplas.2010.05.005

    Article  Google Scholar 

  • Franciosi, P.: The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metall. 33(9), 1601–1612 (1985). doi:10.1016/0001-6160(85)90154-3

    Article  Google Scholar 

  • Gall, K., Maier, H.: Cyclic deformation mechanisms in precipitated niti shape memory alloys. Acta Mater. 50(18), 4643–4657 (2002). doi:10.1016/S1359-6454(02)00315-4

    Article  Google Scholar 

  • Grabe, C., Bruhns, O.: On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int. J. Solids Struct. 45(7–8), 1876–1895 (2008). doi:10.1016/j.ijsolstr.2007.10.029

    Article  MATH  Google Scholar 

  • Hartl, D.J., Chatzigeorgiou, G., Lagoudas, D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast. 26(10), 1485–1507 (2010). doi:10.1016/j.ijplas.2010.01.002

    Article  MATH  Google Scholar 

  • He, Y., Sun, Q.: Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading. Smart Mater. Struct. 19(11), 115, 014 (2010a)

    Google Scholar 

  • He, Y., Sun, Q.: Rate-dependent domain spacing in a stretched niti strip. Int. J. Solids Struct. 47(20), 2775–2783 (2010b). doi:10.1016/j.ijsolstr.2010.06.006

    Google Scholar 

  • He, Y., Sun, Q.: On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int. J. Solids Struct. 48(11–12), 1688–1695 (2011). doi:10.1016/j.ijsolstr.2011.02.017

    Article  MATH  Google Scholar 

  • Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014). doi:10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  • Kan, Q., Kang, G.: Constitutive model for uniaxial transformation ratchetting of super-elastic niti shape memory alloy at room temperature. Int. J. Plast. 26(3), 441–465 (2010). doi:10.1016/j.ijplas.2009.08.005

    Article  MATH  Google Scholar 

  • Kan, Q., Yu, C., Kang, G., Li, J., Yan, W.: Experimental observations on rate-dependent cyclic deformation of super-elastic niti shape memory alloy. Mech. Mater. Submitted for publication (2015)

    Google Scholar 

  • Kang, G., Kan, Q., Qian, L., Liu, Y.: Ratchetting deformation of super-elastic and shape-memory niti alloys. Mech. Mater. 41(2), 139–153 (2009). doi:10.1016/j.mechmat.2008.09.001

    Article  Google Scholar 

  • Lagoudas, D.C., Entchev, P.B.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. part i: constitutive model for fully dense {SMAs}. Mech. Mater. 36(9), 865–892 (2004). doi:10.1016/j.mechmat.2003.08.006

    Article  Google Scholar 

  • Mecking, H., Kocks, U.: Kinetics of flow and strain-hardening. Acta Metall. 29(11), 1865–1875 (1981). doi:10.1016/0001-6160(81)90112-7

    Article  Google Scholar 

  • Miyazaki, S., Imai, T., Igo, Y., Otsuka, K.: Effect of cyclic deformation on the pseudoelasticity characteristics of ti-ni alloys. Metall. Trans. A 17(1), 115–120 (1986). doi:10.1007/BF02644447

    Article  Google Scholar 

  • Morin, C., Moumni, Z., Zaki, W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27(5), 748–767 (2011a). doi:10.1016/j.ijplas.2010.09.005

    Article  MATH  Google Scholar 

  • Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. Int. J. Plast. 27(12), 1959–1980 (2011b). doi:10.1016/j.ijplas.2011.05.005. (special Issue In Honor of Nobutada Ohno)

    Google Scholar 

  • Norfleet, D., Sarosi, P., Manchiraju, S., Wagner, M.X., Uchic, M., Anderson, P., Mills, M.: Transformation-induced plasticity during pseudoelastic deformation in ni-ti microcrystals. Acta Mater. 57(12), 3549–3561 (2009). doi:10.1016/j.actamat.2009.04.009

    Article  Google Scholar 

  • Saint-Sulpice, L., Chirani, S.A., Calloch, S.: A 3d super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mater. 41(1), 12–26 (2009). doi:10.1016/j.mechmat.2008.07.004

    Article  Google Scholar 

  • Saleeb, A., Padula II, S.P., Kumar, A.: A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. Int. J. Plast. 27(5), 655–687 (2011). doi:10.1016/j.ijplas.2010.08.012

    Article  MATH  Google Scholar 

  • Shaw, J.A., Kyriakides, S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 1243–1281 (1995). doi:10.1016/0022-5096(95)00024-D

    Article  Google Scholar 

  • Simon, T., Kröger, A., Somsen, C., Dlouhy, A., Eggeler, G.: On the multiplication of dislocations during martensitic transformations in niti shape memory alloys. Acta Mater. 58(5), 1850–1860 (2010). doi:10.1016/j.actamat.2009.11.028

    Article  Google Scholar 

  • Song, D., Kang, G., Kan, Q., Yu, C., Zhang, C.: The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy. Smart Mater. Struct. 23(1), 015, 008 (2014a)

    Google Scholar 

  • Song, D., Kang, G., Kan, Q., Yu, C., Zhang, C.: Non-proportional multiaxial transformation ratchetting of super-elastic niti shape memory alloy: experimental observations. Mech. Mater. 70, 94–105 (2014b). doi:10.1016/j.mechmat.2013.12.003

    Article  Google Scholar 

  • Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T., Miyazaki, S.: Cyclic stress-strain characteristics of ti-ni and ti-ni-cu shape memory alloys. Mater. Sci. Eng.: A 202(1–2), 148–156 (1995a). doi:10.1016/0921-5093(95)09801-1

    Article  Google Scholar 

  • Strnadel, B., Ohashi, S., Ohtsuka, H., Miyazaki, S., Ishihara, T.: Effect of mechanical cycling on the pseudoelasticity characteristics of ti-ni and ti-ni-cu alloys. Mater. Sci. Eng.: A 203(1–2), 187–196 (1995b). doi:10.1016/0921-5093(95)09881-X

    Article  Google Scholar 

  • Wang, X., Xu, B., Yue, Z.: Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys. Int. J. Plast. 24(8), 1307–1332 (2008). doi:10.1016/j.ijplas.2007.09.006

    Article  MATH  Google Scholar 

  • Yin, H., He, Y., Sun, Q.: Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J. Mech. Phys. Solids 67, 100–128 (2014). doi:10.1016/j.jmps.2014.01.013

    Article  Google Scholar 

  • Yu, C., Kang, G., Kan, Q.: A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of niti shape memory alloy: one-dimensional model. Mech. Mater. 78, 1–10 (2014). doi:10.1016/j.mechmat.2014.07.011

    Article  Google Scholar 

  • Yu, C., Kang, G., Kan, Q., Zhu, Y.: Rate-dependent cyclic deformation of super-elastic niti shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int. J. Plast. 72, 60–90 (2015). doi:10.1016/j.ijplas.2015.05.011

    Article  Google Scholar 

  • Zaki, W., Moumni, Z.: A 3d model of the cyclic thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11), 2427–2454 (2007). doi:10.1016/j.jmps.2007.03.011

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Financial supports by the National Natural Science Foundation of China (11532010) and the project for Sichuan Provincial Youth Science and Technology Innovation Team, China (2013TD0004) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yu, C., Kang, G., Kan, Q. (2016). Effect of Geometric Dimension on the Dissipative Property of the Structures Consisting of NiTi Shape Memory Alloy Wires. In: Naumenko, K., Aßmus, M. (eds) Advanced Methods of Continuum Mechanics for Materials and Structures. Advanced Structured Materials, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-0959-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0959-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0958-7

  • Online ISBN: 978-981-10-0959-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics