Skip to main content

Recent Advances in Nanoclay/Natural Fibers Hybrid Composites

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The growing demand for continual improvement in the engineering applications of thermoplastic and thermoset polymer materials compared with metals in various applications led to the emergence of hybrid nanocomposites by the addition of different nano fillers, with advanced properties. Nano fillers such as carbon black, pyrogenic silica, nano oxides and metal particles are being used as additives in polymers from decades. However, the increasing stringent environmental legislation and consumer awareness highlights the importance of natural, low cost and abundant clay materials such as nanoclays. The hybridization of natural fiber with nanoclay is interestingly positive due to the tendency of nanoclay to upsurge both flexibility and rigidity of the natural fiber in one step. The most promising nanoclay involved in the modification of polymers and natural fibers reinforced polymer composite are montmorillonite, organoclay, saponite and halloysite nanotubes. Nanoclay/natural fibers hybrid nanocomposites have engrossed great attention since their discovery due to their wide variety of properties in food packaging, biomedical devices, automotive industries and other consumer applications with better thermal, physical, mechanical, optical and barrier properties. Present article designed to be a comprehensive source of recent literature and study on nanoclay fillers, its different classes, modification of polymers by nanoclay and their varied applications. This article also intended to covers the recent advances in natural fiber/nanoclay hybrid polymer nanocomposites research study, including their different commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrasoul, G.N., Farkas, B., Romano, I., Diaspro, A., Beke, S.: Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: synthesis, characterization, and photothermal effect. Mater. Sci. Eng., C 56, 305–310 (2015). doi:10.1016/j.msec.2015.06.037

    Article  Google Scholar 

  • Akil, H.M., Omar, M.F., Mazuki, A.A.M., Safiee, S., Ishak, Z.A.M., Abu Bakar, A.: Kenaf fiber reinforced composites: a review. Mater. Des. 32, 4107–4121 (2011). doi:10.1016/j.matdes.2011.04.008

    Article  Google Scholar 

  • Ali, E.S., Ahmad, S.: Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay. Compos. Part B Eng. 43, 2813–2816 (2012). doi:10.1016/j.compositesb.2012.04.043

    Article  Google Scholar 

  • Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab. 95, 2126–2146 (2010). doi:10.1016/j.polymdegradstab.2010.06.007

    Article  Google Scholar 

  • Arrakhiz, F.Z., Benmoussa, K., Bouhfid, R., Qaiss, A.: Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater. Des. 50, 376–381 (2013). doi:10.1016/j.matdes.2013.03.033

    Article  Google Scholar 

  • Babaei, I., Madanipour, M., Farsi, M., Farajpoor, A.: Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Compos. Part B Eng. 56, 163–170 (2014). doi:10.1016/j.compositesb.2013.08.039

    Article  Google Scholar 

  • Bajpai, P.K., Singh, I., Madaan, J.: Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J. Reinf. Plast. Compos. 31, 1712–1724 (2012). doi:10.1177/0731684412447992

    Article  Google Scholar 

  • Baniassadi, M., Laachachi, A., Hassouna, F., Addiego, F., Muller, R., Garmestani, H., Ahzi, S., Toniazzo, V., Ruch, D.: Mechanical and thermal behavior of nanoclay based polymer nanocomposites using statistical homogenization approach. Compos. Sci. Technol. 71, 1930–1935 (2011). doi:10.1016/j.compscitech.2011.09.008

    Article  Google Scholar 

  • Bari, E., Taghiyari, H.R., Schmidt, O., Ghorbani, A., Aghababaei, H.: Effects of nano-clay on biological resistance of wood- plastic composite against five wood-deteriorating fungi. Maderas. Cienc. y Tecnol. 17, 205–212 (2015). doi:10.4067/S0718-221X2015005000020

    Google Scholar 

  • Batouli, S.M., Zhu, Y., Nar, M., D’Souza, N.A.: Environmental performance of kenaf-fiber reinforced polyurethane: a life cycle assessment approach. J. Clean. Prod. 66, 164–173 (2014). doi:10.1016/j.jclepro.2013.11.064

    Article  Google Scholar 

  • Borba, P.M., Tedesco, A., Lenz, D.M.: Effect of reinforcement nanoparticles addition on mechanical properties of SBS/Curauá fiber composites. Mater. Res. 17, 412–419 (2014)

    Article  Google Scholar 

  • Boufi, S., Kaddami, H., Dufresne, A.: Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites. Macromol. Mater. Eng. 299, 560–568 (2014). doi:10.1002/mame.201300232

    Article  Google Scholar 

  • Chan, M.-L., Lau, K.-T., Wong, T.-T., Hoe, M.-P., Hui, D.: Mechanism of reinforcement in a nanoclay/polymer composite. Compos. Part B Eng. 42, 1708–1712 (2011a). doi:10.1016/j.compositesb.2011.03.011

    Article  Google Scholar 

  • Chan, M.L., Lau, K.T., Wong, T.T., Cardona, F.: Interfacial bonding characteristic of nanoclay/polymer composites. Appl. Surf. Sci. 258, 860–864 (2011b). doi:10.1016/j.apsusc.2011.09.016

    Article  Google Scholar 

  • Cherian, B.M., Leão, A.L., De Souza, S.F., Costa, L.M.M., De Olyveira, G.M., Kottaisamy, M., Nagarajand, E.R., Thomas, S.: Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr. Polym. 86, 1790–1798 (2011). doi:10.1016/j.carbpol.2011.07.009

    Article  Google Scholar 

  • Dastjerdi, R., Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf., B 79, 5–18 (2010). doi:10.1016/j.colsurfb.2010.03.029

    Article  Google Scholar 

  • Dewan, M.W., Hossain, M.K., Hosur, M., Jeelani, S.: Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J. Appl. Polym. Sci. 128, 4110–4123 (2013). doi:10.1002/App.38641

    Article  Google Scholar 

  • Dey, A., Bajpai, O.P., Sikder, A.K., Chattopadhyay, S., Khan, M.A.S.: Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting. Renew. Sustain. Energy Rev. 53, 653–671 (2016). doi:10.1016/j.rser.2015.09.004

    Article  Google Scholar 

  • Dittenber, D.B., GangaRao, H.V.S.: Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 43, 1419–1429 (2012). doi:10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  • Du, M., Guo, B., Jia, D.: Newly emerging applications of halloysite nanotubes: a review. Polym. Int. 59, 574–582 (2010). doi:10.1002/pi.2754

    Google Scholar 

  • Ehlmann, B.L., Mustard, J.F., Bishop, J.L., Griffes, J.L.: New secondary minerals detected by MRO CRISM and their geologic settings: kaolinite, chlorite, illite/muscovite, and the possibility of serpentine or carbonate in Nili Fossae. LPI Contrib. 1353, 3270 (2007)

    Google Scholar 

  • Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010)

    Article  Google Scholar 

  • Eng, C.C., Ibrahim, N.A., Zainuddin, N., Ariffin, H., Yunus, W.M.Z.W., Then, Y.Y.: Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites (2014)

    Google Scholar 

  • Fareed, M., Stamboulis, A.: Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement. Int. J. Biomater. 2014, 685389 (2014). doi:10.1155/2014/685389

    Article  Google Scholar 

  • Faruk, O., Matuana, L.: Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos. Sci. Technol. 68, 2073–2077 (2008). doi:10.1016/j.compscitech.2008.03.004

    Article  Google Scholar 

  • Floody, M.C., Theng, B.K.G., Mora, M.L.: Natural nanoclays: applications and future trends—a Chilean perspective. Clay Miner. 44, 161–176 (2009). doi:10.1180/claymin.2009.044.2.161

    Article  Google Scholar 

  • Galpaya, D.: Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 01, 30–49 (2012). doi:10.4236/graphene.2012.12005

    Article  Google Scholar 

  • Gururaja, M.N., Hari Rao, A.N.: A review on recent applications and future prospectus of hybrid composites. Int. J. Soft. Comput. Eng. 1, 352–355 (2012)

    Google Scholar 

  • Hakamy, A., Shaikh, F.U.A., Low, I.M.: Thermal and mechanical properties of hemp fabric-reinforced nanoclay–cement nanocomposites. J. Mater. Sci. 49, 1684–1694 (2014). doi:10.1007/s10853-013-7853-0

    Article  Google Scholar 

  • Han, G., Lei, Y., Wu, Q., Kojima, Y., Suzuki, S.: Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J. Polym. Environ. 16, 123–130 (2008). doi:10.1007/s10924-008-0094-7

    Article  Google Scholar 

  • Haq, M., Burgueño, R., Mohanty, A.K., Misra, M.: Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos. Sci. Technol. 68, 3344–3351 (2008). doi:10.1016/j.compscitech.2008.09.007

    Article  Google Scholar 

  • Henrique, P., Camargo, C., Satyanarayana, K.G., Wypych, F.: Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2009). doi:10.1590/S1516-14392009000100002

    Google Scholar 

  • Hossen, M.F., Hamdan, S., Rahman, M.R., Rahman, M.M., Liew, F.K., Lai, J.C.: Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites. Fibers Polym. 16, 479–485 (2015). doi:10.1007/s12221-015-0479-x

    Article  Google Scholar 

  • Huang, X., Netravali, A.: Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos. Sci. Technol. 67, 2005–2014 (2007). doi:10.1016/j.compscitech.2007.01.007

    Article  Google Scholar 

  • Ibeh, C.C., Bubacz, M.: Current trends in nanocomposite foams. J. Cell. Plast. 44, 493–515 (2008). doi:10.1177/0021955X08097707

    Article  Google Scholar 

  • Islam, M.S., Ahmad, M.B., Hasan, M., Aziz, S.A., Jawaid, M., Haafiz, M.K.M., Zakaria, S.A.H.: Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. BioResources 10, 1394–1407 (2015)

    Article  Google Scholar 

  • Jahanmardi, R., Kangarlou, B., Dibazar, A.: Effects of organically modified nanoclay on cellular morphology, tensile properties, and dimensional stability of flexible polyurethane foams. J. Nanostructure Chem. 3, 82 (2013). doi:10.1186/2193-8865-3-82

    Article  Google Scholar 

  • Kamble, R., Ghag, M., Gaikawad, S., Panda, B.K.: Halloysite nanotubes and applications : a review. J. Adv. Sci. Res. 3, 25–29 (2012)

    Google Scholar 

  • Karger-Kocsis, J., Mahmood, H., Pegoretti, A.: Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater Sci. 73, 1–43 (2015). doi:10.1016/j.pmatsci.2015.02.003

    Article  Google Scholar 

  • Kausar, A.: Processing and properties of poly(ester-urethane)/modified montmorillonite nanocomposite foams derived from novel diol and tolylene-2,4-diisocyanate. J. Thermoplast. Compos. Mater. (2015). doi:10.1177/0892705715610401

    Google Scholar 

  • Kojima, Y., Usuki, A., Kawasumi, M., Akane Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O.: Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8, 1185–1189 (2011). doi:10.1557/JMR.1993.1185

    Article  Google Scholar 

  • Kord, B., Kiakojouri, S.M.H.: Effect of nanoclay dispersion on physical and mechanical properties of wood flour/polypropylene/glass fibre hybrid composites. BioResources 6, 1741–1751 (2011)

    Google Scholar 

  • Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35, 1350–1375 (2010)

    Article  Google Scholar 

  • Kumar, R., Yakabu, M.K., Anandjiwala, R.D.: Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos. Part A Appl. Sci. Manuf. 41, 1620–1627 (2010). doi:10.1016/j.compositesa.2010.07.012

    Article  Google Scholar 

  • Kushwaha, P.K., Kumar, R.: Reinforcing effect of nanoclay in bamboo-reinforced thermosetting resin composites. Polym. Plast. Technol. Eng. 50, 127–135 (2011). doi:10.1080/03602559.2010.512350

    Article  Google Scholar 

  • Lee, Y.H., Kuboki, T., Park, C.B., Sain, M., Kontopoulou, M.: The effects of clay dispersion on the mechanical, physical, and flame-retarding properties of wood fiber/polyethylene/clay nanocomposites. J. Appl. Polym. Sci. 118, 452–461 (2010). doi:10.1002/app.32045

    Article  Google Scholar 

  • Li, B., Zhang, X., Gao, J., Song, Z., Qi, G., Liu, Y., Qiao, J.: Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties. J. Nanosci. Nanotechnol. 10, 5864–5868 (2010a). doi:10.1166/jnn.2010.2500

    Article  Google Scholar 

  • Li, P., Kim, N.H., Bhadra, S., Lee, J.H.: Electroresponsive property of novel poly(acrylate-acryloyloxyethyl trimethyl ammonium chloride)/clay nanocomposite hydrogels. Adv. Mater. Res. 79–82, 2263–2266 (2009a). doi:10.4028/www.scientific.net/AMR.79-82.2263

    Article  Google Scholar 

  • Li, P., Kim, N.H., Hui, D., Rhee, K.Y., Lee, J.H.: Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl. Clay Sci. 46, 414–417 (2009b). doi:10.1016/j.clay.2009.10.007

    Article  Google Scholar 

  • Li, S., Lin, M.M., Toprak, M.S., Kim, D.K., Muhammed, M.: Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev 1, 1–19 (2010b). doi:10.3402/nano.v1i0.5214

    Article  Google Scholar 

  • Li, X., Nikiforow, I., Pohl, K., Adams, J., Johannsmann, D.: Polyurethane coatings reinforced by halloysite nanotubes. Coatings 3, 16–25 (2013). doi:10.3390/coatings3010016

    Article  Google Scholar 

  • Liu, M., Jia, Z., Jia, D., Zhou, C.: Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci. 39, 1498–1525 (2014). doi:10.1016/j.progpolymsci.2014.04.004

    Article  Google Scholar 

  • Liu, Z., Erhan, S.Z., Calvert, P.D.: Solid freeform fabrication of soybean oil-based composites reinforced with clay and fibers. J. Am. Oil Chem. Soc. 81, 605–610 (2004). doi:10.1007/s11746-006-0949-9

    Article  Google Scholar 

  • Marney, D.C.O., Russell, L.J., Wu, D.Y., Nguyen, T., Cramm, D., Rigopoulos, N., Wright, N., Greaves, M.: The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym. Degrad. Stab. 93, 1971–1978 (2008). doi:10.1016/j.polymdegradstab.2008.06.018

    Article  Google Scholar 

  • Marquis, D,M., Guillaume, É., Chivas-Joly, C.: Properties of nanofillers in polymer. In: Cuppoletti, J. (ed.) Nanocomposites and Polymers with Analytical Methods, pp. 261–284. Intech Publishing (2011)

    Google Scholar 

  • Matsuda, D.K.M., Verceheze, A.E.S., Carvalho, G.M., Yamashita, F., Mali, S.: Baked foams of cassava starch and organically modified nanoclays. Ind. Crops Prod. 44, 705–711 (2013). doi:10.1016/j.indcrop.2012.08.032

    Article  Google Scholar 

  • Mittal, V.: Polymer layered silicate nanocomposites: a review. Materials (Basel) 2, 992–1057 (2009). doi:10.3390/ma2030992

    Article  Google Scholar 

  • Mohan, T.P., Kanny, K.: Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 42, 385–393 (2011). doi:10.1016/j.compositesa.2010.12.010

    Article  Google Scholar 

  • Montes, C., Joshi, A., Salehi, S., Lvov, Y., Allouche, E.: In: Sobolev, K., Shah, S.P. (eds.) Nanotechnology in Construction. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  • Morsy, M.S., Alsayed, S.H., Aqel, M.: Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 25, 145–149 (2011). doi:10.1016/j.conbuildmat.2010.06.046

    Article  Google Scholar 

  • Nabil, F.L., Zaidon, A., Jawaid, M., Anwar, U.K.M., Bakar, E.S., Paridah, M.T., Ridzuan, S.M.A., Aizat, G.M.: Physical and morphological properties of nanoclay in low molecular weight phenol formaldehyde resin by ultrasonication. Int. J. Adhes. Adhes. 62, 124–129 (2015). doi:10.1016/j.ijadhadh.2015.07.012

    Article  Google Scholar 

  • Najafi, A., Kord, B., Abdi, A., Ranaee, S.: The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J. Thermoplast. Compos. 25, 717–727 (2012). doi:10.1177/0892705711412813

    Article  Google Scholar 

  • Nakato, T., Miyamoto, N.: Liquid crystalline behavior and related properties of colloidal systems of inorganic oxide nanosheets. Materials (Basel) 2, 1734–1761 (2009). doi:10.3390/ma2041734

    Article  Google Scholar 

  • Nieddu, E., Mazzucco, L., Gentile, P., et al.: Preparation and biodegradation of clay composites of PLA. React. Funct. Polym. 69, 371–379 (2009). doi:10.1016/j.reactfunctpolym.2009.03.002

    Article  Google Scholar 

  • Nourbakhsh, A., Ashori, A.: Influence of nanoclay and coupling agent on the physical and mechanical properties of polypropylene/bagasse nanocomposite. Polymer (Guildf) 112, 1386–1390 (2009). doi:10.1002/app

    Google Scholar 

  • Özcan, A.S., Erdem, B., Özcan, A.: Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci. 280, 44–54 (2004). doi:10.1016/j.jcis.2004.07.035

    Google Scholar 

  • Patel, R.H., Patel, K.S.: Synthesis of flame retardant polyester-urethanes and their applications in nanoclay composites and coatings. Polym. Int. 63, 529–536 (2014). doi:10.1002/pi.4547

    Article  Google Scholar 

  • Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer (Guildf) 49, 3187–3204 (2008). doi:10.1016/j.polymer.2008.04.017

    Article  Google Scholar 

  • Pavlidou, S., Papaspyrides, C.D.: A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 33, 1119–1198 (2008). doi:10.1016/j.progpolymsci.2008.07.008

    Article  Google Scholar 

  • Pojanavaraphan, T., Schiraldi, D.A., Magaraphan, R.: Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. Appl, Clay Sci. 50, 271–279 (2010). doi:10.1016/j.clay.2010.08.020

    Google Scholar 

  • Pollet, E., Delcourt, C., Alexandre, M., Dubois, P.: Organic-inorganic nanohybrids obtained by sequential copolymerization of ε-caprolactone and L, L-lactide from activated clay surface. Macromol. Chem. Phys. 205, 2235–2244 (2004). doi:10.1002/macp.200400180

    Article  Google Scholar 

  • Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S.: Graphene-based polymer nanocomposites. Polymer (Guildf) 52, 5–25 (2011). doi:10.1016/j.polymer.2010.11.042

    Article  Google Scholar 

  • Prabhu, P., Jawahar, P., Balasubramanian, M., Mohan, T.P.: Machinability study of hybrid nanoclay-glass fibre reinforced polyester composites. Int. J. Polym. Sci. (2013). doi:10.1155/2013/416483

    Google Scholar 

  • Prasad, A.V.R., Rao, K.B., Rao, K.M., Ramanaiah, K., Gudapati, S.P.K.: Influence of nanoclay on the mechanical performance of wild cane grass fiber-reinforced polyester nanocomposites. Int. J. Polym. Anal. Charact. 20, 541–556 (2015). doi:10.1080/1023666X.2015.1053335

    Google Scholar 

  • Prasanth, R., Shubha, N., Hng, H.H., Srinivasan, M.: Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur. Polym. J. 49, 307–318 (2013). doi:10.1016/j.eurpolymj.2012.10.033

    Article  Google Scholar 

  • Raghavan, P., Lim, D.-H., Ahn, J.-H., Nah, C., Sherrington, D.C., Ryu, H.-S., Ahn, H.J.: Electrospun polymer nanofibers: the booming cutting edge technology. React. Funct. Polym. 72, 915–930 (2012). doi:10.1016/j.reactfunctpolym.2012.08.018

    Article  Google Scholar 

  • Rahman, N.A., Hassan, A., Yahya, R., Lafia-Araga, R.A.: Glass fiber and nano-clay reinforced polypropylene composites: morphological, thermal and mechanical properties. Sains Malasyana 42, 537–546 (2013)

    Google Scholar 

  • Rajini, N., Jappes, J.T.W., Jeyaraj, P., Rajakarunakaran, S., Bennet, C.: Effect of montmorillonite nanoclay on temperature dependence mechanical properties of naturally woven coconut sheath/polyester composite. J. Reinf. Plast. Compos. 32, 811–822 (2013). doi:10.1177/0731684413475721

    Article  Google Scholar 

  • Raman, N., Sudharsan, S., Pothiraj, K.: Synthesis and structural reactivity of inorganic-organic hybrid nanocomposites—a review. J. Saudi Chem. Soc. 16, 339–352 (2012). doi:10.1016/j.jscs.2011.01.012

    Article  Google Scholar 

  • Rawtani, D., Agrawal, Y.K.: Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci. 30, 282–295 (2012)

    Google Scholar 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  • Nafchi, H.R., Abdouss, M., Najafi, S.K., Gargari, R.M., Mazhar, M.: Effects of nano-clay particles and oxidized polypropylene polymers on improvement of the practical properties of wood-polypropylene composite. Adv. Compos. Mater 24, 239–248 (2015). doi:10.1080/09243046.2014.891341

    Article  Google Scholar 

  • Saba, N., Tahir, P., Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 6, 2247–2273 (2014). doi:10.3390/polym6082247

    Article  Google Scholar 

  • Saba, N., Paridah, M.T., Abdan, K., Ibrahim, N.A.: Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers. Bio Resour. 10, 4530–4543 (2015a)

    Google Scholar 

  • Saba, N., Jawaid, M., Hakeem, K.R., et al.: Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renew. Sustain. Energy Rev. 42, 446–459 (2015b)

    Article  Google Scholar 

  • Saba, N., Paridah, M.T., Jawaid, M.: Mechanical properties of Kenaf fibre reinforced polymer composite: a review. Constr. Build. Mater. 76, 87–96 (2015c)

    Article  Google Scholar 

  • Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., van Es, M., Lohmar, J., Blau, W.J., Schulte, K., Windle, A.H., Shaffer, M.S.P., et al.: A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer (Guildf) 45, 2001–2015 (2004). doi:10.1016/j.polymer.2004.01.023

    Article  Google Scholar 

  • Sedaghat, S.: Synthesis of clay-CNTs nanocomposite. J. Nanostruct. Chem. 3, 3–6 (2013)

    Google Scholar 

  • Shalwan, A., Yousif, B.F.: Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater. Des. 59, 264–273 (2014). doi:10.1016/j.matdes.2014.02.066

    Article  Google Scholar 

  • Shirini, F., Mamaghani, M., Atghia, S.V.: Sulfonic acid functionalized ordered nanoporous Na+-Montmorillonite (SANM) as an efficient and recyclable catalyst for the chemoselective methoxymethylation of alcohols. J. Nanostruct. Chem. 3, 1–5 (2012). doi:10.1186/2193-8865-3-2

    Article  Google Scholar 

  • Singh, A.P., Sharma, M., Singh, I.: A review of modeling and control during drilling of fiber reinforced plastic composites. Compos. Part B Eng. 47, 118–125 (2013). doi:10.1016/j.compositesb.2012.10.038

    Article  Google Scholar 

  • Sothornvit, R., Rhim, J.W., Hong, S.I.: Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J. Food Eng. 91, 468–473 (2009). doi:10.1016/j.jfoodeng.2008.09.026

    Article  Google Scholar 

  • Srasra, E., Bergaya, F., Fripiat, J.J.: Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Miner. F Full J. Title Clays Clay Miner. 42, 237–241 (1994). doi:10.1346/CCMN.1994.0420301

    Article  Google Scholar 

  • Subramaniyan, A.K., Sun, C.T.: Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. J. Compos. Mater. 42, 2111–2122 (2008). doi:10.1177/0021998308094550

    Article  Google Scholar 

  • Tabari, H.Z., Nourbakhsh, A., Ashori, A.: Effects of nanoclay and coupling agent on the physico-mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polym. Eng. Sci. 51, 272–277 (2011). doi:10.1002/pen.21823

    Article  Google Scholar 

  • TeacÇŽ, C.A., BodîrlÇŽu, R., Spiridon, I.: Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydr. Polym. 93, 307–315 (2013). doi:10.1016/j.carbpol.2012.10.020

    Article  Google Scholar 

  • Thakur, M.K., Gupta, R.K., Thakur, V.K.: Surface modification of cellulose using silane coupling agent. Carbohydr. Polym. 111, 849–855 (2014). doi:10.1016/j.carbpol.2014.05.041

    Article  Google Scholar 

  • Thakur, V.K., Thakur, M.K.: Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 109, 102–117 (2014). doi:10.1016/j.carbpol.2014.03.039

    Article  Google Scholar 

  • Thakur, V.K., Singha, A.S., Thakur, M.K.: Surface modification of natural polymers to impart low water absorbency. Int. J. Polym. Anal. Charact. 17, 133–143 (2012). doi:10.1080/1023666X.2012.640455

    Google Scholar 

  • Thakur, V.K., Thakur, M.K., Gupta, R.K.: Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr. Polym. 97, 18–25 (2013). doi:10.1016/j.carbpol.2013.04.069

    Article  Google Scholar 

  • Turku, I., Kärki, T.: The effect of carbon fibers, glass fibers and nanoclay on wood flour-polypropylene composite properties. Eur. J. Wood Wood Prod. 72, 73–79 (2014). doi:10.1007/s00107-013-0754-8

    Article  Google Scholar 

  • Uddin, F.: Studies in finishing effects of clay mineral in polymers and synthetic fibers. Adv. Mater. Sci. Eng. 2013, 1–13 (2013). doi:10.1155/2013/243515

    Article  Google Scholar 

  • Uddin, F.: Clays, nanoclays, and montmorillonite minerals. Metall. Mater. Trans. A 39, 2804–2814 (2008)

    Article  Google Scholar 

  • Ursache, O., Rodrigues, S.: Combined effects of dam removal and past sediment mining on a relatively large lowland sandy gravel bed river (Vienne River, France). EGU Gen. 16, 3870 (2014)

    Google Scholar 

  • Valença, S.L., Griza, S., de Oliveira, V.G., Sussuchi, E.M., de Cunha, F.G.C.: Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Compos. Part B Eng. 70, 1–8 (2015). doi:10.1016/j.compositesb.2014.09.040

    Google Scholar 

  • Wei, J., Meyer, C.: Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. J. Mater. Sci. 49, 7604–7619 (2014). doi:10.1007/s10853-014-8469-8

    Article  Google Scholar 

  • Wilson, M.J.: Clay mineralogical and related characteristics of geophagic materials. J. Chem. Ecol. 29, 1525–1547 (2003). doi:10.1023/A:1024262411676

    Article  Google Scholar 

  • Yan, L., Chouw, N., Jayaraman, K.: Flax fibre and its composites—a review. Compos. Part B Eng. 56, 296–317 (2014). doi:10.1016/j.compositesb.2013.08.014

    Article  Google Scholar 

  • Yuan, P., Tan, D., Annabi-Bergaya, F.: Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci. 112–113, 75–93 (2015). doi:10.1016/j.clay.2015.05.001

    Article  Google Scholar 

  • Yunsheng, Z., Wei, S., Zongjin, L., Xiangming, Z., Eddie, Chungkong C.: Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr. Build. Mater. 22, 370–383 (2008). doi:10.1016/j.conbuildmat.2006.08.006

    Article  Google Scholar 

  • Yusoh, K.B.: Mechanical and physical properties of wood-plastic composites made of polypropylene, wood flour and nanoclay. Proc. Int. Agric. Plant ISBN 978-9, 1–10 (2015)

    Google Scholar 

  • Zahedi, M., Khanjanzadeh, H., Pirayesh, H., Saadatnia, M.A.: Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour–polypropylene bio-nanocomposites. Compos. Part B Eng. 71, 143–151 (2015). doi:10.1016/j.compositesb.2014.11.009

    Article  Google Scholar 

  • Zhang, Y., Tang, A., Yang, H., Ouyang, J.: Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci. (2015). doi:10.1016/j.clay.2015.06.034

    Google Scholar 

  • Zotti, A., Borriello, A., Ricciardi, M., Antonucci, V., Giordano, M., Zarrelli, M.: Effects of sepiolite clay on degradation and fire behaviour of a bisphenol A-based epoxy. Compos. Part B 73, 139–148 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the International Graduate Research Fellowship (IGRF) UPM Malaysia grant to support this work. The authors also thankful to the Universiti Putra Malaysia for supporting this research study through Putra Grant Vot No. 9420700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Saba, N., Jawaid, M., Asim, M. (2016). Recent Advances in Nanoclay/Natural Fibers Hybrid Composites. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0950-1_1

Download citation

Publish with us

Policies and ethics