Advertisement

Biophotonics pp 259-290 | Cite as

Spectroscopic Methodologies

  • Gerd KeiserEmail author
Chapter
  • 2.4k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Numerous viable optical spectroscopic methodologies are being implemented in biophotonics. Each spectroscopic discipline is progressively adopting more sophisticated photonics and optical fiber-based systems for delivering probing light to a tissue analysis site, for collecting light emitted from a specimen, and for returning this light to photodetection, recording, and analysis instruments. A key technological advance of spectroscopic methodologies is for rapid, accurate, and noninvasive in vivo detection and diagnosis of various health conditions. Examples of spectroscopic techniques used in biophotonics include fluorescence spectroscopy, fluorescent correlation spectroscopy, elastic scattering spectroscopy, diffuse correlation spectroscopy, Raman spectroscopy, surface-enhanced Raman scattering spectroscopy, coherent anti-Stokes Raman scattering spectroscopy, stimulated Raman scattering spectroscopy, photon correlation spectroscopy, Fourier transform infrared spectroscopy, and Brillouin scattering spectroscopy.

Keywords

Raman Spectroscopy Fluorescence Lifetime Correlation Spectroscopy Fluorescence Correlation Spectroscopy Fluorescence Lifetime Imaging Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Richards-Kortum, E. Sevick-Muraca, Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47(10), 555–606 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, 080902 (2014)Google Scholar
  3. 3.
    M. Olivo, R. Bhuvaneswari, I. Keogh, Advances in bio-optical imaging for the diagnosis of early oral cancer. Pharmaceutics (Special issue: Molecular Imaging) 3(3), 354–378 (2011)Google Scholar
  4. 4.
    A. Wax, M.G. Giacomelli, T.E. Matthews, M.T. Rinehart, F.E. Robles, Y. Zhu, Optical spectroscopy of biological cells. Adv. Opt. Photonics 4(3), 322–378 (2012)CrossRefGoogle Scholar
  5. 5.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)CrossRefGoogle Scholar
  6. 6.
    U. Kubitscheck, Fluorescence Microscopy: From Principles to Biological Applications (Wiley-Blackman, Weinheim, 2013)CrossRefGoogle Scholar
  7. 7.
    M. Olivo, J.H. Ho, C.Y. Fu, Advances in fluorescence diagnosis to track footprints of cancer progression in vivo. Laser Photonics Rev. 7(5), 646–662 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Engelborghs, A.J.W.G. Visser (eds.), Fluorescence Spectroscopy and Microscopy: Methods and Protocols (Springer, New York, 2014)Google Scholar
  9. 9.
    P.P. Mondal, A. Diaspro, Fundamentals of Fluorescence Microscopy (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  10. 10.
    S.C. Hovan, S. Howell, P.S.-H. Park, Förster resonance energy transfer as a tool to study photoreceptor biology. J. Biomed. Opt. 15(6), 067001 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T. Förster, Energiewanderung und Fluoreszenz, Naturwissenschaften, 33(6), 166–175 (1946). Translation: Energy migration and fluorescence. J. Biomed. Opt. 17(1), 011002 (2012)Google Scholar
  12. 12.
    R.S. Knox, Förster’s resonance excitation transfer theory. J. Biomed. Opt. 17(1), 011003 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W. Becker, The bh TCSPC Handbook, 6th edn. (Becker & Hickl, Berlin, 2015)Google Scholar
  14. 14.
    J.W. Borst, A.J.W.G. Visser, Topical review: fluorescence lifetime imaging microscopy in life sciences. Meas. Sci. Technol. 21, 102002 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T. Dellwig, P.Y. Lin, F.J. Kao, Long-distance fluorescence lifetime imaging using stimulated emission. J. Biomed. Opt. 17(1), 011009 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F.J. Kao, G. Deka, N. Mazumder, Cellular autofluroscence detection through FLIM/FRET microscopy, in The Current Trends in Optics and Photonics, ed. by C.-C. Lee (Springer, Dordrecht, Netherlands, 2015), pp. 471–482Google Scholar
  17. 17.
    K. Suhling, L.M. Hirvonen, J.A. Levitt, P.H. Chung, C. Tregidgo, A. Le Marois, D.A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Henderson, N. Krstajic, Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Med. Photonics 27, 3–40 (2015). (Review Article)CrossRefGoogle Scholar
  18. 18.
    S.T. Hess, S.H. Huang, A.A. Heikal, W.W. Webb, Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41, 697–705 (2002)CrossRefGoogle Scholar
  19. 19.
    R. Macháň, M. Hof, Recent developments in fluorescence correlation spectroscopy for diffusion measurements in planar lipid membranes. Int. J. Mol. Sci. 11, 427–457 (2010). (Review Article)CrossRefGoogle Scholar
  20. 20.
    P. Schwille, J. Ries, Principles and applications of fluorescence correlation spectroscopy (FCS), in Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, ed. by B. Di Bartolo, J. Collins (Springer, Berlin, 2011), pp. 63–86CrossRefGoogle Scholar
  21. 21.
    Y. Tian, M.M. Martinez, D. Pappas, Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115–124 (2011). (Review Article)ADSCrossRefGoogle Scholar
  22. 22.
    L.N. Hillesheim, J.D. Müller, The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors. Biophys. J. 85, 1948–1958 (2003)CrossRefGoogle Scholar
  23. 23.
    C. Eggeling, S. Jäger, D. Winkler, P. Kask, Comparison of different fluorescence fluctuation methods for their use in FRET assays: Monitoring a protease reaction. Curr. Pharma. Biotechnol. 6, 351–371 (2005)CrossRefGoogle Scholar
  24. 24.
    T. Winkler, U. Kettling, A. Koltermann, M. Eigen, Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening. Proc. Natl. Acad. Sci. USA 96, 1375–1378 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    I.J. Bigio, J.R. Mourant, Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42, 803–814 (1997)CrossRefGoogle Scholar
  26. 26.
    X. Cheng, D.A. Boas, Diffuse optical reflection tomography with continuous-wave illumination. Opt. Express 3(3), 118–123 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    O.M. A’Amar, L. Liou, E. Rodriguez-Diaz, A. De las Morenas, I.J. Bigio, Comparison of elastic scattering spectroscopy with histology in ex vivo prostate glands: potential application for optically guided biopsy and directed treatment. Lasers Med. Sci. 28(5), 1323–1329 (2013)CrossRefGoogle Scholar
  28. 28.
    K.W. Calabro, I.J. Bigio, Influence of the phase function in generalized diffused reflectance models: review of current formalisms and novel observations. J. Biomed. Opt. 19(7), 075005 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    A. Douplik, S. Zanati, G. Saiko, C. Streutker, M. Loshchenov, D. Adler, S. Cho, D. Chen, M. Cirocco, N. Marcon, J. Fengler, B.C. Wilson, Diffuse reflectance spectroscopy in Barrett’s esophagus: developing a large field-of-view screening method discriminating dysplasia from metaplasia. J. Biophotonics 7(5), 304–311 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Yu, A. Shah, V.K. Nagarajan, D.G. Ferris, Diffuse reflectance spectroscopy of epithelial tissue with a smart fiber-optic probe. Biomed. Opt. Express 5(3), 675–689 (2014)CrossRefGoogle Scholar
  31. 31.
    K. Vishwanath, K. Chang, D. Klein, Y.F. Deng, V. Chang, J.E. Phelps, N. Ramanulam, Portable, fiber-based, diffuse reflection spectroscopy (DRS) systems for estimating tissue optical properties. Appl. Spectrosc. 62, 206–215 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    J. Dong, R. Bi, J.H. Ho, P.S.P. Thong, K.C. Soo, K. Lee, Diffuse correlation spectroscopy with a fast Fourier transform-based software autocorrelator. J. Biomed. Opt. 17, 097004 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Shang, K. Gurley, G. Yu, Diffuse correlation spectroscopy (DCS) for assessment of tissue blood flow in skeletal muscle: recent progress. Anat. Physiol. 3(2), 128 (2013)Google Scholar
  34. 34.
    T. Durduran, A.G. Yodh, Diffuse correlation spectroscopy for noninvasive, microvascular cerebral blood flow measurement. NeuroImage 85, 51–63 (2014). (Review Article)CrossRefGoogle Scholar
  35. 35.
    E.M. Buckley, A.B. Parthasarathy, P.E. Grant, A.G. Yodh, M.A. Franceschini, Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects. Neurophotonics 1(1), 011009 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Downes, A. Elfick, Raman spectroscopy and related techniques in biomedicine. Sensors 10, 1871–1889 (2010). (Review Article)CrossRefGoogle Scholar
  37. 37.
    Y. Huang, P.P. Shum, F. Luan, M. Tang, Raman-assisted wavelength conversion in chalcogenide waveguides. IEEE J. Sel. Topics Quantum Electron. 18(2), 646–653 (2012)CrossRefGoogle Scholar
  38. 38.
    C. Krafft, B. Dietzek, M. Schmitt, J. Popp, Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J. Biomed. Opt. 17, 040801 (2012). (Review article)ADSCrossRefGoogle Scholar
  39. 39.
    P. Matousek, N. Stone, Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis. J. Biophotonics 6(1), 7–19 (2013). (Review Article)CrossRefGoogle Scholar
  40. 40.
    W. Wang, J. Zhao, M. Short, H. Zeng, Real-time in vivo cancer diagnosis using Raman spectroscopy. J. Biophotonics 8(7), 527–545 (2015). (Review Article)CrossRefGoogle Scholar
  41. 41.
    K.W. Kho, C.Y. Fu, U.S. Dinish, M. Olivo, Clinical SERS: are we there yet? J. Biophotonics 4(10), 667–684 (2011). (Review Article)CrossRefGoogle Scholar
  42. 42.
    D. Cialla, A. Maerz, R. Boehme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem. 403(1), 27–54 (2012)CrossRefGoogle Scholar
  43. 43.
    U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)CrossRefGoogle Scholar
  44. 44.
    C. Yuen, Q. Liu, Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe. J. Biophotonics 7(9), 683–689 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Shiohara, Y. Wang, L.M. Liz-Marzan, Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C: Photochem. Rev. 21, 2–25 (2014). (Review Article)CrossRefGoogle Scholar
  46. 46.
    U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 4075 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    G.S. He, Nonlinear Optics and Photonics (Oxford University Press, Oxford, 2015)Google Scholar
  48. 48.
    H. Tu, S.A. Boppart, Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J. Biophotonics 7(1–2), 9–22 (2014). (Review article)CrossRefGoogle Scholar
  49. 49.
    A.F. Pegoraro, A.D. Slepkov, A. Ridsdale, D.J. Moffatt, A. Stolow, Hyperspectral multimodal CARS microscopy in the fingerprint region. J. Biophotonics 7(1–2), 49–58 (2014)CrossRefGoogle Scholar
  50. 50.
    R. Pecora (ed.), Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Springer, New York, 1985)Google Scholar
  51. 51.
    M. Plewicki, R. Levis, Femtosecond stimulated Raman spectroscopy of methanol and acetone in a noncollinear geometry using a supercontinuum probe. J. Opt. Soc. Am. B 25(10), 1714–1719 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    F.-K. Lu, M. Ji, D. Fu, X. Ni, C.W. Freudiger, G. Holtom, X.S. Xie, Multicolor stimulated Raman scattering microscopy. Mol. Phys. 110(15–16), 1927–1932 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    C.W. Freudiger, W. Yang, G.R. Holton, N. Peyghambarian, X.S. Xie, K.Q. Kieu, Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photonics 8(2), 153–159 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    M. Filella, J. Zhang, M.E. Newman, J. Buffle, Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Aquat. Colloid Surf. Chem. 120(1–3), 27–46 (1997)CrossRefGoogle Scholar
  55. 55.
    W. Tscharnuter, Photon correlation spectroscopy in particle sizing, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, New York, 2013)Google Scholar
  56. 56.
    P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd edn. (Wiley, Hoboken, NJ, 2007)CrossRefGoogle Scholar
  57. 57.
    C. Hughes, M. Brown, G. Clemens, A. Henderson, G. Monjardez, N.W. Clarke, P. Gardner, Assessing the challenges of Fourier transform infrared spectroscopic analysis of blood serum. J. Biophotonics 7(3–4), 180–188 (2014)CrossRefGoogle Scholar
  58. 58.
    J. Cao, E.S. Ng, D. McNaughton, E.G. Stanley, A.G. Elefanty, M.J. Tobin, P. Heraud, Fourier transform infrared microspectroscopy reveals unique phenotypes for human embryonic and induced pluripotent stem cell lines and their progeny. J. Biophotonics 7(10), 767–781 (2014)CrossRefGoogle Scholar
  59. 59.
    G. Scarcelli, S.H. Yun, Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2(1), 39–43 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    S. Reiß, G. Burau, O. Stachs, R. Guthoff, H. Stolz, Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed. Opt. Express 2(8), 2144–2159 (2011)CrossRefGoogle Scholar
  61. 61.
    Z. Steelman, Z. Meng, A.J. Traverso, V.V. Yakovlev, Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. J. Biophoton. 8(5), 408–414 (2015)CrossRefGoogle Scholar
  62. 62.
    Z. Meng, V.V. Yakovlev, Brillouin spectroscopy characterizes microscopic viscoelasticity associated with skin injury. In: Proceedings of SPIE 9321, paper 93210C, Photonics West, San Francisco, 5 Mar 2015Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations