Biophotonics pp 233-258 | Cite as


  • Gerd KeiserEmail author
Part of the Graduate Texts in Physics book series (GTP)


Many technical developments have appeared in recent years to enhance imaging performance and instrument versatility in optical microscopy for biophotonics and biomedical applications to visualize objects ranging in size from millimeters to nanometers. These developments include increasing the penetration depth in scattering media, improving image resolution beyond the diffraction limit, increasing image acquisition speed, enhancing instrument sensitivity, and developing better contrast mechanisms. This chapter first describes the basic concepts and principles of optical microscopy and then discusses the limitations of distinguishing two closely spaced points. Next, the functions of confocal microscopes, fluorescence microscopy, multiphoton microscopy, Raman microscopy, light sheet microscopy, and super-resolution fluorescence microscopy are given.


Surface Enhance Raman Scattering Objective Lens Numerical Aperture Stimulate Raman Scattering Fluorescence Lifetime Imaging Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.F.P. Török, F.J. Kao (eds.), Optical Imaging and Microscopy: Techniques and Advanced Systems, 2nd edn. (Springer, Berlin, 2007)Google Scholar
  2. 2.
    J. Mertz, Introduction to Optical Microscopy (Roberts and Company Publishers, Greenwood Village, 2009)Google Scholar
  3. 3.
    T.S. Tkaczyk, Field Guide to Microscopy. (SPIE Press, 2010)Google Scholar
  4. 4.
    D.B. Murphy, M.W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, 2nd edn. (Wiley-Blackwell, Hoboken, 2013)Google Scholar
  5. 5.
    P. Xi, Optical Nanoscopy and Novel Microscopy Techniques. (CRC Press, 2015)Google Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    F. Jenkins, H. White, Fundamentals of Optics, 4th ed., chap. 15. (McGraw-Hill, New York, 2002)Google Scholar
  10. 10.
    C.A. Diarzio, Optics for Engineers (CRC Press, Boca Raton, 2012)Google Scholar
  11. 11.
    E. Hecht, Optics, 5th edn., chap. 8. (Addison-Wesley, 2016)Google Scholar
  12. 12.
    J.W. Pawley (ed.), Handbook of Biological Confocal Microscopy, 3rd edn. (Springer, Berlin, 2006)Google Scholar
  13. 13.
    C.J.R. Sheppard, S. Rehman, “Confocal microscopy”, chap. 6, in Biomedical Optical Imaging Technologies: Design and Applications, ed. by R. Liang (Springer, Berlin, 2013)Google Scholar
  14. 14.
    T. Wilson, Confocal microscopy, chap. 11 in Biomedical Photonics Handbook vol. I, 2nd edn. ed. by T. Vo-Dinh, (CRC Press, Boca Raton, FL, 2015)Google Scholar
  15. 15.
    H.J. Shin, M.C. Pierce, D. Lee, H. Ra, O. Solgaard, R.R. Richards-Kortum, Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens. Opt. Express 15(15), 9113–9122 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Pillai, D. Lorenser, D.D. Sampson, Fiber-optic confocal microscopy using a miniaturized needle-compatible imaging probe, in Proceedings of SPIE 7753, 21st International Conference Optical Fiber Sensors, paper 77534 M, 17 May 2011Google Scholar
  17. 17.
    L.W. Zhang, N.A. Monteiro-Riviere, Use of confocal microscopy for nanoparticle drug delivery through skin, J. Biomed. Opt. 18(6), art. 061214 (2013)Google Scholar
  18. 18.
    B.N. Ozbay, J.T. Losacco, R. Cormack, R. Weir, V.M. Bright, J.T. Gopinath, D. Restrepo, E.A. Gibson, Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts. Opt. Express 40(11), 2553–2556 (2015)Google Scholar
  19. 19.
    M. Mueller, Introduction to Confocal Fluorescence Microscopy, SPIE Press, 2nd ed. (2006)Google Scholar
  20. 20.
    U. Kubitscheck, Fluorescence Microscopy: From Principles to Biological Applications (Wiley-Blackman, Weinheim, 2013)CrossRefGoogle Scholar
  21. 21.
    Y. Engelborghs, A.J.W.G. Visser (eds.), Fluorescence Spectroscopy and Microscopy: Methods and Protocols (Springer, New York, 2014)Google Scholar
  22. 22.
    P.P. Mondal, A. Diaspro, Fundamentals of Fluorescence Microscopy (Springer, Dordrecht, 2014)CrossRefGoogle Scholar
  23. 23.
    K. König, Multiphoton microscopy in life sciences: review article. J. Microsc 200, 83–104 (2002)CrossRefGoogle Scholar
  24. 24.
    M.D. Young, J.J. Field, K.E. Sheetz, R.A. Bartes, J. Squier, A pragmatic guide to multiphoton microscope design. Adv. Opt. Photonics 7, 276–378 (2015)CrossRefGoogle Scholar
  25. 25.
    P.T.C. So, Two-photon excitation fluorescence microscopy, chap. 12, in Biomedical Photonics Handbook, ed. by T. Vo-Dinh, vol. I, 2nd edn. (CRC Press, Boca Raton, 2015)Google Scholar
  26. 26.
    T. Dieing, O. Hollricher, J. Toporski (eds.), Confocal Raman Microscopy (Springer, Berlin, 2010)Google Scholar
  27. 27.
    C. Krafft, B. Dietzek, M. Schmitt, J. Popp, Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J. Biomed. Opt. 17(4), article 040801, (2012)Google Scholar
  28. 28.
    K.A. Antonio, Z.D. Schultz, Advances in biomedical Raman microscopy. Anal. Chem. 86(1), 30–46 (2014)CrossRefGoogle Scholar
  29. 29.
    P.A. Santi, Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59(2), 129–138 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    L. Gutiérrez-Heredia, P.M. Flood, G.R. Emmanuel, Light sheet fluorescence microscopy: beyond the flatlands, pp. 838–847 in ed. by Current microscopy contributions to advances in science and technology A. Méndez-Vilas, ed., vol. 2 (Formatex Research Center, Badajoz, Spain, 2012)Google Scholar
  31. 31.
    M.B. Ahrens, M.B. Orger, D.N. Robson, J.M. Li, P.J. Keler, Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 410–413 (2013)CrossRefGoogle Scholar
  32. 32.
    O.E. Olarte, J. Andilla, D. Artigas, P. Loza-Alvaez, Decoupled illumination detection in light sheet microscopy for fast volumetric imaging. Optica 2, 702–705 (2015)CrossRefGoogle Scholar
  33. 33.
    A.K. Glaser, Y. Wang, J.T.C. Liu, Assessing the imaging performance of light sheet microscopies in highly scattering tissues. Biomed. Opt. Express 7(2), 454–466 (2016)CrossRefGoogle Scholar
  34. 34.
    B.O. Leung, K.C. Chou, Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65(9), 967–980 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19(11), 780–782 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003)CrossRefGoogle Scholar
  37. 37.
    B. Harke, J. Keller, C.K. Ullal, V. Westphal, A. Schönle, S.W. Hell, Resolution scaling in STED microscopy. Opt. Express, 16(6), 4154–4162 (2008)Google Scholar
  38. 38.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    R. Henriques, M.M. Mhlanga, Review: PALM and STORM: what hides beyond the Rayleigh limit? Biotechnol. J. 4, 846–847 (2009)CrossRefGoogle Scholar
  40. 40.
    P. Annibale, S. Vani, M. Scarselli, U. Rothlisberger, A. Radenovic, Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    A. Shivanandan, H. Deschout, M. Scarselli, A. Radenovic, Review: challenges in quantitative single molecule localization microscopy. FEBS Lett. 588(19), 3595–3602 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations