Skip to main content

Optical Probes and Biosensors

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3801 Accesses

Abstract

Optical probes and photonics-based biosensors are important tools in most biophotonics diagnostic, therapeutic, imaging, and health-status monitoring instrumentation setups. These devices can selectively detect or analyze specific biological elements, such as microorganisms, organelles, tissue samples, cells, enzymes, antibodies, and nucleic acids derived from human and animal tissue and body fluids, cell cultures, foods, or air, water, soil, and vegetation samples. Of particular interest for biosensing processes are optical fiber probes, nanoparticle-based sensors, optical fiber and waveguide substance sensors, photodetector arrays, fiber Bragg grating sensors, and surface plasmon resonance devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23(2), 151–160 (2007). (Review paper)

    Article  Google Scholar 

  2. X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008). (Review paper)

    Article  Google Scholar 

  3. G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Optics 19, art. 080902 (2014) (Review paper)

    Google Scholar 

  4. L.C.L. Chin, W.M. Whelan, I.A. Vitkin, Optical fiber sensors for biomedical applications (Chap. 17), in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert (Springer, New York, 2011)

    Google Scholar 

  5. X.D. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5(10), 591–597 (2011). (Biosensors review paper)

    Article  ADS  Google Scholar 

  6. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, E. Schena, Optical fiber-based MR-compatible sensors for medical applications: an overview. Sensors 13, 14105–14120 (2013). (Review paper)

    Article  Google Scholar 

  7. X.D. Wang, O.F. Wolfbeis, Review: fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013). (Review paper)

    Article  Google Scholar 

  8. O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114, 5728–5752 (2014). (Biosensors review paper)

    Article  Google Scholar 

  9. T.J. Pfefer, K.T. Schomacker, M.N. Ediger, N.S. Nishioka, Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt. 41(22), 4712–4721 (2002)

    Article  ADS  Google Scholar 

  10. P.R. Bargo, S.A. Prahl, S.L. Jacques, Optical properties effects upon the collection efficiency of optical fibers in different probe configurations. IEEE J. Sel. Topics Quantum Electron. 9(2), 314–321 (2003)

    Article  Google Scholar 

  11. U. Utzinger, R.R. Richards-Kortum, Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8, 121–147 (2003). (Review paper)

    Article  ADS  Google Scholar 

  12. L. Wang, H.Y. Choi, Y. Jung, B.H. Lee, K.T. Kim, Optical probe based on double-clad optical fiber for fluorescence spectroscopy. Opt. Express 15(26), 17681–17689 (2007)

    Article  ADS  Google Scholar 

  13. G.K. Bhowmick, N. Gautam, L.M. Gantayet, Design optimization of fiber optic probes for remote fluorescence spectroscopy. Opt. Commun. 282(14), 2676–2684 (2009)

    Article  ADS  Google Scholar 

  14. R.A. McLaughlin, D.D. Sampson, Clinical applications of fiber-optic probes in optical coherence tomography. Opt. Fiber Technol. 16(6), 467–475 (2010). (Review paper)

    Article  ADS  Google Scholar 

  15. R. Pashaie, Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans. Biomed. Eng. 60, 268–280 (2013)

    Article  Google Scholar 

  16. P. Svenmarker, C.T. Xu, S. Andersson-Engels, J. Krohn, Effects of probe geometry on transscleral diffuse optical spectroscopy. Biomed. Opt. Express 2, 3058–3071 (2011)

    Article  Google Scholar 

  17. P. Gregorčič, M. Jezeršek, J. Možina, Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries. J. Biomed. Opt. 17, article 075006 (2012)

    Google Scholar 

  18. D. Lorenser, B.C. Quirk, M. Auger, W.J. Madore, R.W. Kirk, N. Godbout, D.D. Sampson, C. Boudoux, R.A. McLaughlin, Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. Opt. Lett. 38(3), 266–268 (2013)

    Article  ADS  Google Scholar 

  19. I. Latka, S. Dochow, C. Krafft, B. Dietzek, J. Popp, Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photon. Rev. 7(5), 698–731 (2013). (Review paper)

    Article  Google Scholar 

  20. A.J. Gomes, V. Backman, Algorithm for automated selection of application-specific fiber-optic reflectance probes. J. Biomed. Opt. 18, article 027012 (2013)

    Google Scholar 

  21. C.R. Wilson, L.A. Hardy, J.D. Kennedy, P.B. Irby, M.N. Fried, Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J. Biomed. Opt. 21(1), article 018003 (2016)

    Google Scholar 

  22. U. Utzinger, Fiber optic probe design (Chap. 7), in Biomedical Photonics Handbook; Vol 1; Fundamentals, Devices, and Techniques, 2nd edn., ed. by T. Vo-Dinh (CRC Press, Boca Raton, 2014), pp. 253–279

    Google Scholar 

  23. D.V. Lim, Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc. IEEE 91(6), 902–907 (2003)

    Article  Google Scholar 

  24. A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sensors and Actuators B 125, 688–703 (2007). (Review paper)

    Article  Google Scholar 

  25. R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). J. Clin. Chem. 51(12), 2415–2418 (2005)

    Article  Google Scholar 

  26. S.D. Gan, K.R. Patel, Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol. 133(9), article 287 (2013)

    Google Scholar 

  27. P. Roriz, O. Frazão, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simões, Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J. Biomed. Opt. 18(5), article 050903 (2013) (Review paper)

    Google Scholar 

  28. G. Keiser, Optical Fiber Communications (Chap. 5) (McGraw-Hill, New York), 4th US edn., 2011; 5th international edn. 2015

    Google Scholar 

  29. N. Lagakos, J.H. Cole, J.A. Bucaro, Microbend fiber-optic sensor. Appl. Opt. 26(11), 2171–2180 (1987)

    Article  ADS  Google Scholar 

  30. Z. Chen, D. Lau, J.T. Teo, S.H. Ng, X. Yang, P.L. Kei, Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 19, article 057001 (2014)

    Google Scholar 

  31. M. Karimi, T. Sun, K.T.V. Grattan, Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications. IEEE Sens. J. 13(11), 4459–4464 (2013)

    Google Scholar 

  32. B.H. Lee, Y.H. Kim, K.S. Park, J.B. Eom, M.J. Kim, B.S. Rho, H.Y. Choi, Interferometric fiber optic sensors. Sensors 12(3), 2467–2486 (2012)

    Article  Google Scholar 

  33. R. Yang, Y.S. Yu, X. Yang, C. Chen, Q.D. Chen, H.B. Sun, Single S-tapered fiber Mach-Zehnder interferometers. Opt. Lett. 36(33), 4482–4484 (2011)

    Article  ADS  Google Scholar 

  34. Z.B. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greig, J.M. Fraser, H.P. Loock, R.D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photon. Technol. Lett. 20(8), 626–628 (2008)

    Article  ADS  Google Scholar 

  35. L. Jiang, L. Zhao, S. Wang, J. Yang, H. Xiao, Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment. Opt. Express 19, 17591–17598 (2011)

    Google Scholar 

  36. C.R. Liao, Y. Wang, D.N. Wang, M.W. Yang, Fiber in-line Mach-Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement. IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010)

    Article  ADS  Google Scholar 

  37. Y. Jung, S. Lee, B.H. Lee, K. Oh, Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide. Opt. Lett. 33(24), 2934–2936 (2008)

    Article  ADS  Google Scholar 

  38. W.J. Bock, T.A. Eftimov, P. Mikulic, J. Chen, An inline core-cladding intermodal interferometer using a photonic crystal fiber. J. Lightw. Technol. 27(17), 3933–3939 (2009)

    Article  ADS  Google Scholar 

  39. L.C. Li, L. Xia, Z.H. Xie, D.M. Liu, All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20(10), 11109–11120 (2012)

    Article  ADS  Google Scholar 

  40. K.S. Chiang, F.Y.M. Chan, M.N. Ng, Analysis of two parallel long-period fiber gratings. J. Lightw. Technol. 22(5), 1358–1366 (2004)

    Article  ADS  Google Scholar 

  41. D.J.J. Hu, J.L. Lim, M. Jiang, Y. Wang, F. Luan, P.P. Shum, H. Wei, W. Tong, Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index. Opt. Lett. 37(12), 2283–2285 (2012)

    Article  ADS  Google Scholar 

  42. L. Marques, F.U. Hernandez, S.W. James, S.P. Morgan, M. Clark, R.P. Tatam, S. Korposh, Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 75, 222–231 (2016)

    Article  Google Scholar 

  43. X.Y. Dong, H.Y. Tam, P. Shum, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett. 90(15), article 151113 (2007)

    Google Scholar 

  44. B. Dong, J. Hao, C.Y. Liaw, Z. Xu, Cladding-mode-resonance in polarization maintaining photonics crystal fiber based Sagnac interferometer and its application for fiber sensor. J. Lightw. Technol. 29(12), 1759–1762 (2011)

    Article  ADS  Google Scholar 

  45. D.J.J. Hu, J.L. Lim, M.K. Park, L.T.-H. Kao, Y. Wang, H. Wei, W. Tong, Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection. IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012)

    Google Scholar 

  46. U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)

    Article  Google Scholar 

  47. T. Gong, Y. Cui, D. Goh, K.K. Voon, P.P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, M. Olivo, Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosens. Bioelectron. 64, 227–233 (2015)

    Article  Google Scholar 

  48. N. Zhang, G. Humbert, T. Gong, P.P. Shum, K. Li, J.-L. Auguste, Z. Wu, D.J.J. Hu, F. Luan, Q.X. Dinh, M. Olivo, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 223, 195–201 (2016)

    Article  Google Scholar 

  49. Z. Xu, J. Lim, D.J.J. Hu, Q. Sun, R.Y.-N. Wong, M. Jiang, P.P. Shum, Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber. Opt. Express 24(2), 1699–1707 (2016)

    Article  ADS  Google Scholar 

  50. G.J. Triggs, M. Fischer, D. Stellinga, M.G. Scullion, G.J.O. Evans, T.F. Krauss, Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing. IEEE Photonics J. 7(3), article 6801810 (2015)

    Google Scholar 

  51. A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, S. Selleri, Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. J. Biomed. Opt. 18, article 057004 (2013)

    Google Scholar 

  52. H. Ottevaere, M. Tabak, K. Chah, P. Mégret, H. Thienpont, Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors, in Proceedings of SPIE 8439, Optical Sensing and Detection II, paper 843903, May 2012

    Google Scholar 

  53. C. Leitão, L. Bilro, N. Alberto, P. Antunes, H. Lima, P.S. André, R. Nogueira, J.L. Pinto, Development of a FBG probe for non-invasive carotid pulse waveform assessment, in Proceedings of SPIE on Biophotonics, Proceedings of SPIE 8439, paper 84270J, May 2012

    Google Scholar 

  54. G.T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, N. Pleros, Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt. Express 18(1), 179–186 (2010)

    Article  ADS  Google Scholar 

  55. J. Hao, M. Jayachandran, N. Ni, J. Phua, H.M. Liew, P.W. Aung Aung, J. Biswas, S.F. Foo, J.A. Low, P.L.K. Yap, An intelligent elderly healthcare monitoring system using fiber-based sensors. J. Chin. Inst. Eng. 33(5), 653–660 (2010)

    Google Scholar 

  56. M. Nishyama, M. Miyamoto, K. Watanabe, Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J. Biomed. Opt. 16, 017002 (2011)

    Article  ADS  Google Scholar 

  57. L. Mohanty, S.C. Tjin, D.T.T. Lie, S.E.C. Panganiban, P.K.H. Chow, Fiber grating sensor for pressure mapping during total knee arthroplasty. Sens. Actuators A 135(2), 323–328 (2007)

    Article  Google Scholar 

  58. E.A. Al-Fakih, N.A. Abu Osman, F.R.M. Adikan, The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012) (Review paper)

    Google Scholar 

  59. C.R. Dennison, P.M. Wild, D.R. Wilson, M.K. Gilbart, An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21(11), 115803 (2010)

    Article  ADS  Google Scholar 

  60. G.T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, N. Pleros, Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt. Express 18(1), 179–186 (2010)

    Article  ADS  Google Scholar 

  61. J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, M.M. Szczesniak, P.G. Dinning, I.J. Cook, In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of in gastrointestinal motility disorder. Opt. Express 17(6), 4500–4508 (2009)

    Article  ADS  Google Scholar 

  62. P.G. Dinning, L. Wiklendt, L. Maslen, V. Patton, H. Lewis, J.W. Arkwright, D.A. Wattchow, D.Z. Lubowski, M. Costa, P.A. Bampton, Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry. Neurogastroenterol. Motil. 27(3), 379–388 (2015)

    Article  Google Scholar 

  63. A. Bhalla, N. Grewal, U. Tiwari, V. Mishra, N.S. Mehla, S. Raviprakash, P. Kapur, Shock absorption ability of laminate mouth guards in two different malocclusions using fiber Bragg grating (FBG) sensor. Dent. Traumatol. 29(3), 218–225 (2013)

    Article  Google Scholar 

  64. M. Ciocchetti, C. Massaroni, P. Saccomandi, M.A. Caponero, A. Polimadei, D. Formica, E. Schena, Smart textile based on fiber Bragg grating sensors for respiratory monitoring: design and preliminary trials. Biosensors 5, 602–615 (2015)

    Article  Google Scholar 

  65. S. Poeggel, D. Duraibabu, K. Kalli, G. Leen, G. Dooly, E. Lewis, J. Kelly, M. Munroe, Recent improvement of medical optical fibre pressure and temperature sensors. Biosensors 5, 432–449 (2015)

    Article  Google Scholar 

  66. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  67. M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek, Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4), 781–799 (2014)

    Article  Google Scholar 

  68. C.L. Wong, M. Olivo, Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)

    Article  Google Scholar 

  69. O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114(11), 5728–5752 (2014)

    Google Scholar 

  70. E. Seymour, G.G. Daaboul, X. Zhang, S.M. Scherr, N.L. Ünlü, J.H. Connor, M.S. Ünlü, DNA directed antibody immobilization for enhanced detection of single viral pathogens. Anal. Chem. 87(20), 10505–10512 (2015)

    Article  Google Scholar 

  71. Y.T. Long, C. Jing, Localized Surface Plasmon Resonance Based Nanobiosensors (Springer, Berlin, 2014)

    Google Scholar 

  72. M. Consales, M. Pisco, A. Cusano, Review: lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sens. 2(4), 289–314 (2012)

    Article  ADS  Google Scholar 

  73. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol. 19(6), 772–784 (2013)

    Article  ADS  Google Scholar 

  74. J. Cao, T. Sun, K.T.V. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B Chem. 195, 332–351 (2014)

    Article  Google Scholar 

  75. C.-K. Chu, Y.-C. Tu, Y.-W. Chang, C.-K. Chu, S.-Y. Chen, T.-T. Chi, Y.-W. Kiang, C.C. Yang, Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. Nanotechnology 26(7), article 075102 (2015)

    Google Scholar 

  76. J. Albert, A lab on fiber. IEEE Spectr. 51, 49–53 (2014)

    Article  Google Scholar 

  77. K.Z. Kamili, A. Pandikumar, G. Sivaraman, H.N. Lim, S.P. Wren, T. Sun, N.M. Huang, Silver@graphene oxide nanocomposite-based optical sensor platform for biomolecules. RSC Adv. 5(23), 17809–17816 (2015)

    Google Scholar 

  78. N. Lebedev, I. Griva, W.J. Dressick, J. Phelps, J.E. Johnson, Y. Meshcheriakova, G.P. Lomonossoff, C.M. Soto, A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor. Biosens. Bioelectron. 77, 306–314 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Optical Probes and Biosensors. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_7

Download citation

Publish with us

Policies and ethics