Biophotonics pp 197-232 | Cite as

Optical Probes and Biosensors

  • Gerd KeiserEmail author
Part of the Graduate Texts in Physics book series (GTP)


Optical probes and photonics-based biosensors are important tools in most biophotonics diagnostic, therapeutic, imaging, and health-status monitoring instrumentation setups. These devices can selectively detect or analyze specific biological elements, such as microorganisms, organelles, tissue samples, cells, enzymes, antibodies, and nucleic acids derived from human and animal tissue and body fluids, cell cultures, foods, or air, water, soil, and vegetation samples. Of particular interest for biosensing processes are optical fiber probes, nanoparticle-based sensors, optical fiber and waveguide substance sensors, photodetector arrays, fiber Bragg grating sensors, and surface plasmon resonance devices.


Surface Plasmon Resonance Optical Fiber Surface Enhance Raman Scattering Fiber Bragg Grating Fiber Bragg Grating Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23(2), 151–160 (2007). (Review paper)CrossRefGoogle Scholar
  2. 2.
    X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008). (Review paper)CrossRefGoogle Scholar
  3. 3.
    G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Optics 19, art. 080902 (2014) (Review paper)Google Scholar
  4. 4.
    L.C.L. Chin, W.M. Whelan, I.A. Vitkin, Optical fiber sensors for biomedical applications (Chap. 17), in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert (Springer, New York, 2011)Google Scholar
  5. 5.
    X.D. Fan, I.M. White, Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5(10), 591–597 (2011). (Biosensors review paper)ADSCrossRefGoogle Scholar
  6. 6.
    F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, E. Schena, Optical fiber-based MR-compatible sensors for medical applications: an overview. Sensors 13, 14105–14120 (2013). (Review paper)CrossRefGoogle Scholar
  7. 7.
    X.D. Wang, O.F. Wolfbeis, Review: fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013). (Review paper)CrossRefGoogle Scholar
  8. 8.
    O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114, 5728–5752 (2014). (Biosensors review paper)CrossRefGoogle Scholar
  9. 9.
    T.J. Pfefer, K.T. Schomacker, M.N. Ediger, N.S. Nishioka, Multiple-fiber probe design for fluorescence spectroscopy in tissue. Appl. Opt. 41(22), 4712–4721 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    P.R. Bargo, S.A. Prahl, S.L. Jacques, Optical properties effects upon the collection efficiency of optical fibers in different probe configurations. IEEE J. Sel. Topics Quantum Electron. 9(2), 314–321 (2003)CrossRefGoogle Scholar
  11. 11.
    U. Utzinger, R.R. Richards-Kortum, Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8, 121–147 (2003). (Review paper)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wang, H.Y. Choi, Y. Jung, B.H. Lee, K.T. Kim, Optical probe based on double-clad optical fiber for fluorescence spectroscopy. Opt. Express 15(26), 17681–17689 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    G.K. Bhowmick, N. Gautam, L.M. Gantayet, Design optimization of fiber optic probes for remote fluorescence spectroscopy. Opt. Commun. 282(14), 2676–2684 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R.A. McLaughlin, D.D. Sampson, Clinical applications of fiber-optic probes in optical coherence tomography. Opt. Fiber Technol. 16(6), 467–475 (2010). (Review paper)ADSCrossRefGoogle Scholar
  15. 15.
    R. Pashaie, Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans. Biomed. Eng. 60, 268–280 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Svenmarker, C.T. Xu, S. Andersson-Engels, J. Krohn, Effects of probe geometry on transscleral diffuse optical spectroscopy. Biomed. Opt. Express 2, 3058–3071 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Gregorčič, M. Jezeršek, J. Možina, Optodynamic energy-conversion efficiency during an Er:YAG-laser-pulse delivery into a liquid through different fiber-tip geometries. J. Biomed. Opt. 17, article 075006 (2012)Google Scholar
  18. 18.
    D. Lorenser, B.C. Quirk, M. Auger, W.J. Madore, R.W. Kirk, N. Godbout, D.D. Sampson, C. Boudoux, R.A. McLaughlin, Dual-modality needle probe for combined fluorescence imaging and three-dimensional optical coherence tomography. Opt. Lett. 38(3), 266–268 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    I. Latka, S. Dochow, C. Krafft, B. Dietzek, J. Popp, Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photon. Rev. 7(5), 698–731 (2013). (Review paper)CrossRefGoogle Scholar
  20. 20.
    A.J. Gomes, V. Backman, Algorithm for automated selection of application-specific fiber-optic reflectance probes. J. Biomed. Opt. 18, article 027012 (2013)Google Scholar
  21. 21.
    C.R. Wilson, L.A. Hardy, J.D. Kennedy, P.B. Irby, M.N. Fried, Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J. Biomed. Opt. 21(1), article 018003 (2016)Google Scholar
  22. 22.
    U. Utzinger, Fiber optic probe design (Chap. 7), in Biomedical Photonics Handbook; Vol 1; Fundamentals, Devices, and Techniques, 2nd edn., ed. by T. Vo-Dinh (CRC Press, Boca Raton, 2014), pp. 253–279Google Scholar
  23. 23.
    D.V. Lim, Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc. IEEE 91(6), 902–907 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sensors and Actuators B 125, 688–703 (2007). (Review paper)CrossRefGoogle Scholar
  25. 25.
    R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). J. Clin. Chem. 51(12), 2415–2418 (2005)CrossRefGoogle Scholar
  26. 26.
    S.D. Gan, K.R. Patel, Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol. 133(9), article 287 (2013)Google Scholar
  27. 27.
    P. Roriz, O. Frazão, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simões, Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J. Biomed. Opt. 18(5), article 050903 (2013) (Review paper)Google Scholar
  28. 28.
    G. Keiser, Optical Fiber Communications (Chap. 5) (McGraw-Hill, New York), 4th US edn., 2011; 5th international edn. 2015Google Scholar
  29. 29.
    N. Lagakos, J.H. Cole, J.A. Bucaro, Microbend fiber-optic sensor. Appl. Opt. 26(11), 2171–2180 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    Z. Chen, D. Lau, J.T. Teo, S.H. Ng, X. Yang, P.L. Kei, Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 19, article 057001 (2014)Google Scholar
  31. 31.
    M. Karimi, T. Sun, K.T.V. Grattan, Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications. IEEE Sens. J. 13(11), 4459–4464 (2013)Google Scholar
  32. 32.
    B.H. Lee, Y.H. Kim, K.S. Park, J.B. Eom, M.J. Kim, B.S. Rho, H.Y. Choi, Interferometric fiber optic sensors. Sensors 12(3), 2467–2486 (2012)CrossRefGoogle Scholar
  33. 33.
    R. Yang, Y.S. Yu, X. Yang, C. Chen, Q.D. Chen, H.B. Sun, Single S-tapered fiber Mach-Zehnder interferometers. Opt. Lett. 36(33), 4482–4484 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Z.B. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greig, J.M. Fraser, H.P. Loock, R.D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photon. Technol. Lett. 20(8), 626–628 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    L. Jiang, L. Zhao, S. Wang, J. Yang, H. Xiao, Femtosecond laser fabricated all-optical fiber sensors with ultrahigh refractive index sensitivity: modeling and experiment. Opt. Express 19, 17591–17598 (2011)Google Scholar
  36. 36.
    C.R. Liao, Y. Wang, D.N. Wang, M.W. Yang, Fiber in-line Mach-Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement. IEEE Photon. Technol. Lett. 22(22), 1686–1688 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Jung, S. Lee, B.H. Lee, K. Oh, Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide. Opt. Lett. 33(24), 2934–2936 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    W.J. Bock, T.A. Eftimov, P. Mikulic, J. Chen, An inline core-cladding intermodal interferometer using a photonic crystal fiber. J. Lightw. Technol. 27(17), 3933–3939 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    L.C. Li, L. Xia, Z.H. Xie, D.M. Liu, All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20(10), 11109–11120 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    K.S. Chiang, F.Y.M. Chan, M.N. Ng, Analysis of two parallel long-period fiber gratings. J. Lightw. Technol. 22(5), 1358–1366 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    D.J.J. Hu, J.L. Lim, M. Jiang, Y. Wang, F. Luan, P.P. Shum, H. Wei, W. Tong, Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index. Opt. Lett. 37(12), 2283–2285 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    L. Marques, F.U. Hernandez, S.W. James, S.P. Morgan, M. Clark, R.P. Tatam, S. Korposh, Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 75, 222–231 (2016)CrossRefGoogle Scholar
  43. 43.
    X.Y. Dong, H.Y. Tam, P. Shum, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett. 90(15), article 151113 (2007)Google Scholar
  44. 44.
    B. Dong, J. Hao, C.Y. Liaw, Z. Xu, Cladding-mode-resonance in polarization maintaining photonics crystal fiber based Sagnac interferometer and its application for fiber sensor. J. Lightw. Technol. 29(12), 1759–1762 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    D.J.J. Hu, J.L. Lim, M.K. Park, L.T.-H. Kao, Y. Wang, H. Wei, W. Tong, Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection. IEEE J. Sel. Top. Quantum Electron. 18(4), 1293–1297 (2012)Google Scholar
  46. 46.
    U.S. Dinish, G. Balasundaram, Y.T. Chang, M. Olivo, Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7(11–12), 956–965 (2014)CrossRefGoogle Scholar
  47. 47.
    T. Gong, Y. Cui, D. Goh, K.K. Voon, P.P. Shum, G. Humbert, J.-L. Auguste, X.-Q. Dinh, K.-T. Yong, M. Olivo, Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosens. Bioelectron. 64, 227–233 (2015)CrossRefGoogle Scholar
  48. 48.
    N. Zhang, G. Humbert, T. Gong, P.P. Shum, K. Li, J.-L. Auguste, Z. Wu, D.J.J. Hu, F. Luan, Q.X. Dinh, M. Olivo, L. Wei, Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sens. Actuators B Chem. 223, 195–201 (2016)CrossRefGoogle Scholar
  49. 49.
    Z. Xu, J. Lim, D.J.J. Hu, Q. Sun, R.Y.-N. Wong, M. Jiang, P.P. Shum, Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber. Opt. Express 24(2), 1699–1707 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    G.J. Triggs, M. Fischer, D. Stellinga, M.G. Scullion, G.J.O. Evans, T.F. Krauss, Spatial resolution and refractive index contrast of resonant photonic crystal surfaces for biosensing. IEEE Photonics J. 7(3), article 6801810 (2015)Google Scholar
  51. 51.
    A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, S. Selleri, Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. J. Biomed. Opt. 18, article 057004 (2013)Google Scholar
  52. 52.
    H. Ottevaere, M. Tabak, K. Chah, P. Mégret, H. Thienpont, Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors, in Proceedings of SPIE 8439, Optical Sensing and Detection II, paper 843903, May 2012Google Scholar
  53. 53.
    C. Leitão, L. Bilro, N. Alberto, P. Antunes, H. Lima, P.S. André, R. Nogueira, J.L. Pinto, Development of a FBG probe for non-invasive carotid pulse waveform assessment, in Proceedings of SPIE on Biophotonics, Proceedings of SPIE 8439, paper 84270J, May 2012Google Scholar
  54. 54.
    G.T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, N. Pleros, Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt. Express 18(1), 179–186 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    J. Hao, M. Jayachandran, N. Ni, J. Phua, H.M. Liew, P.W. Aung Aung, J. Biswas, S.F. Foo, J.A. Low, P.L.K. Yap, An intelligent elderly healthcare monitoring system using fiber-based sensors. J. Chin. Inst. Eng. 33(5), 653–660 (2010)Google Scholar
  56. 56.
    M. Nishyama, M. Miyamoto, K. Watanabe, Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J. Biomed. Opt. 16, 017002 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    L. Mohanty, S.C. Tjin, D.T.T. Lie, S.E.C. Panganiban, P.K.H. Chow, Fiber grating sensor for pressure mapping during total knee arthroplasty. Sens. Actuators A 135(2), 323–328 (2007)CrossRefGoogle Scholar
  58. 58.
    E.A. Al-Fakih, N.A. Abu Osman, F.R.M. Adikan, The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012) (Review paper)Google Scholar
  59. 59.
    C.R. Dennison, P.M. Wild, D.R. Wilson, M.K. Gilbart, An in-fiber Bragg grating sensor for contact force and stress measurements in articular joints. Meas. Sci. Technol. 21(11), 115803 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    G.T. Kanellos, G. Papaioannou, D. Tsiokos, C. Mitrogiannis, G. Nianios, N. Pleros, Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt. Express 18(1), 179–186 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, M.M. Szczesniak, P.G. Dinning, I.J. Cook, In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of in gastrointestinal motility disorder. Opt. Express 17(6), 4500–4508 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    P.G. Dinning, L. Wiklendt, L. Maslen, V. Patton, H. Lewis, J.W. Arkwright, D.A. Wattchow, D.Z. Lubowski, M. Costa, P.A. Bampton, Colonic motor abnormalities in slow transit constipation defined by high resolution, fibre-optic manometry. Neurogastroenterol. Motil. 27(3), 379–388 (2015)CrossRefGoogle Scholar
  63. 63.
    A. Bhalla, N. Grewal, U. Tiwari, V. Mishra, N.S. Mehla, S. Raviprakash, P. Kapur, Shock absorption ability of laminate mouth guards in two different malocclusions using fiber Bragg grating (FBG) sensor. Dent. Traumatol. 29(3), 218–225 (2013)CrossRefGoogle Scholar
  64. 64.
    M. Ciocchetti, C. Massaroni, P. Saccomandi, M.A. Caponero, A. Polimadei, D. Formica, E. Schena, Smart textile based on fiber Bragg grating sensors for respiratory monitoring: design and preliminary trials. Biosensors 5, 602–615 (2015)CrossRefGoogle Scholar
  65. 65.
    S. Poeggel, D. Duraibabu, K. Kalli, G. Leen, G. Dooly, E. Lewis, J. Kelly, M. Munroe, Recent improvement of medical optical fibre pressure and temperature sensors. Biosensors 5, 432–449 (2015)CrossRefGoogle Scholar
  66. 66.
    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  67. 67.
    M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek, Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4), 781–799 (2014)CrossRefGoogle Scholar
  68. 68.
    C.L. Wong, M. Olivo, Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4), 809–824 (2014)CrossRefGoogle Scholar
  69. 69.
    O. Tokel, F. Inci, U. Demirci, Advances in plasmonic technologies for point of care applications. Chem. Rev. 114(11), 5728–5752 (2014)Google Scholar
  70. 70.
    E. Seymour, G.G. Daaboul, X. Zhang, S.M. Scherr, N.L. Ünlü, J.H. Connor, M.S. Ünlü, DNA directed antibody immobilization for enhanced detection of single viral pathogens. Anal. Chem. 87(20), 10505–10512 (2015)CrossRefGoogle Scholar
  71. 71.
    Y.T. Long, C. Jing, Localized Surface Plasmon Resonance Based Nanobiosensors (Springer, Berlin, 2014)Google Scholar
  72. 72.
    M. Consales, M. Pisco, A. Cusano, Review: lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sens. 2(4), 289–314 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol. 19(6), 772–784 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    J. Cao, T. Sun, K.T.V. Grattan, Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens. Actuators B Chem. 195, 332–351 (2014)CrossRefGoogle Scholar
  75. 75.
    C.-K. Chu, Y.-C. Tu, Y.-W. Chang, C.-K. Chu, S.-Y. Chen, T.-T. Chi, Y.-W. Kiang, C.C. Yang, Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. Nanotechnology 26(7), article 075102 (2015)Google Scholar
  76. 76.
    J. Albert, A lab on fiber. IEEE Spectr. 51, 49–53 (2014)CrossRefGoogle Scholar
  77. 77.
    K.Z. Kamili, A. Pandikumar, G. Sivaraman, H.N. Lim, S.P. Wren, T. Sun, N.M. Huang, Silver@graphene oxide nanocomposite-based optical sensor platform for biomolecules. RSC Adv. 5(23), 17809–17816 (2015)Google Scholar
  78. 78.
    N. Lebedev, I. Griva, W.J. Dressick, J. Phelps, J.E. Johnson, Y. Meshcheriakova, G.P. Lomonossoff, C.M. Soto, A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor. Biosens. Bioelectron. 77, 306–314 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations