Biophotonics pp 147-196 | Cite as

Light-Tissue Interactions

  • Gerd KeiserEmail author
Part of the Graduate Texts in Physics book series (GTP)


A fundamental challenge in biophotonics is to understand the interaction of light with multilayered, multicomponent, and optically inhomogeneous biological tissues. The effects of light-tissue interactions include reflection and refraction when light encounters different tissue types, absorption of photon energy, and multiple scattering of photons. Light absorption determines how far light can penetrate into a specific tissue. It depends strongly on wavelength and is important in the diagnosis and therapy of abnormal tissue conditions. Scattering of photons in tissue is another significant factor in light-tissue interactions. Together, absorption and multiple scattering of photons cause light beams to broaden and decay as photons travel through tissue. Light can interact with biological tissue through many different mechanisms, including photobiomodulation, photochemical interactions, thermal interactions (e.g., coagulation and vaporization), photoablation, plasma-induced ablation, and photodisruption. Two key phenomena used in tissue analyses are random interference patterns or speckle fields and the principles of fluorescence.


Optical Coherence Tomography Biological Tissue Irradiance Level Vibrational Energy Level Acne Scar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.F. Cheong, S.A. Prahl, A.J. Welch, A review of the optical properties of biological tissues. IEEE J. Quantum Elec. 26, 2166–2185 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter, 2nd edn. (Springer, Berlin, 2007)Google Scholar
  3. 3.
    N.H. Niemz, Laser-Tissue Interaction, 3rd edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar
  4. 4.
    A.J. Welch, M.J.C. van Gemert (eds.), Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn. (Springer, Berlin, 2011)Google Scholar
  5. 5.
    M. Schmitt, T. Mayerhöfer, J. Popp, Light-matter interaction, Chap. 3, in Handbook of Biophotonics: Vol. 1: Basics and Techniques, ed. by J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann (Wiley, London, 2011)Google Scholar
  6. 6.
    S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37–R61 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Kulikov, Laser Interaction with Biological Material (Springer, Berlin, 2014)CrossRefGoogle Scholar
  8. 8.
    J. Mobley, T. Vo-Dinh, V.V. Tuchin, Optical properties of tissue, Chap. 2, in Biomedical Photonics Handbook, 2nd edn., ed. by T. Vo-Dinh (CRC Press, Boca Raton, FL, 2014), pp. 23–121Google Scholar
  9. 9.
    V.V. Tuchin, Light-tissue interactions, Chap. 3, in Biomedical Photonics Handbook, 2nd edn., ed. by T. Vo-Dinh (CRC Press, Boca Raton, Florida, 2014), pp. 123–167Google Scholar
  10. 10.
    M. Olivo, U.S. Dinish (eds.), Frontiers in Biophotonics for Translational Medicine (Springer, Singapore, 2016)Google Scholar
  11. 11.
    A.H.-P. Ho, D. Kim, M.G. Somekh (eds.), Handbook of Photonics for Biomedical Engineering (Springer, Berlin, 2016)Google Scholar
  12. 12.
    U. Fares, M.A. Al-Aqaba, A.M. Otri, H.S. Dua, A review of refractive surgery. Eur. Ophthalmol. Rev. 5(1), 50–55 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Artal, Optics of the eye and its impact on vision: a tutorial. Adv. Opt. Photonics 6, 340–367 (2014)CrossRefGoogle Scholar
  14. 14.
    F. Guarnieri (ed.), Corneal Biomechanics and Refractive Surgery (Springer, New York, 2015)Google Scholar
  15. 15.
    S.L. Jacques, Monte Carlo modeling of light transport in tissue, Chap. 5, in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert (Springer, Berlin, 2011)Google Scholar
  16. 16.
    L.V. Wang, H.I. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007)Google Scholar
  17. 17.
    W.M. Star, Diffusion theory of light transport, Chap. 6, in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd edn., ed. by A.J. Welch, M.J.C. van Gemert (Springer, Berlin, 2011)Google Scholar
  18. 18.
    S.J. Norton, T. Vo-Dinh, Theoretical models and algorithms in optical diffusion tomography, Chap. 4, in Biomedical Photonics Handbook; Vol. 1; Fundamentals, Devices, and Techniques, 2nd edn., ed. by T. Vo-Dinh (CRC Press, Boca Raton, FL, 2014), pp. 253–279Google Scholar
  19. 19.
    B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)Google Scholar
  20. 20.
    H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, A. Bretscher, H. Ploegh, A. Amon, M.P. Scott, Molecular Cell Biology, 7th edn. (W.H. Freeman, San Francisco, CA, 2013)Google Scholar
  21. 21.
    T. Engel, P. Reid, Physical Chemistry, 3rd edn. (Prentice Hall, Englewood Cliffs, NJ, 2012)Google Scholar
  22. 22.
    D.B. Wetlaufer, Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17, 303–390 (1963)CrossRefGoogle Scholar
  23. 23.
    C.N. Pace, F. Vajdos, L. Fee, G. Grimsley, T. Gray, How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Barth, The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 74(3–5), 141–173 (2000)CrossRefGoogle Scholar
  25. 25.
    S.H. Tseng, P. Bargo, A. Durkin, N. Kollias, Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt. Express 17(17), 14599–14617 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Prahl, Tabulated molar extinction coefficient for hemoglobin in water. Available from Accessed 25 July 2015
  27. 27.
    A. Wax, V. Backman, Biological Applications of Light Scattering (McGraw-Hill, New York, 2010)Google Scholar
  28. 28.
    R. Petry, M. Schmitt, J. Popp, Raman spectroscopy: a prospective tool in life sciences. Chemphyschem 4, 14–30 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Downes, A. Elfick, Raman spectroscopy and related techniques in biomedicine. Sensors 10, 1871–1889 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Krafft, B. Dietzek, M. Schmitt, J. Popp, Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J. Biomed. Opt. 17, 040801 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Q. Peng, A. Juzeniene, J. Chen, L.O. Svaasand, T. Warloe, K.-E. Giercksky, J. Moan, Lasers in medicine. Rpts. Prog. Phys. 71, 056701 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    E. Hahm, S. Kulhari, P.R. Arany, Targeting the pain, inflammation and immune (PII) axis: plausible rationale for LLLT. Photon. Laser Med. 1(4), 241–254 (2012)CrossRefGoogle Scholar
  33. 33.
    P.R. Arany, A. Cho, T.D. Hunt, G. Sidhu, K. Shin, E. Hahm, G.X. Huang, J. Weaver, A.C.-H. Chen, B.L. Padwa, M.R. Hamblin, M.H. Barcellos-Hoff, A.B. Kulkarni, D.J. Mooney, Photoactivation of endogenous latent transforming growth factor—b1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med. 6(238), 238ra69 (2014)CrossRefGoogle Scholar
  34. 34.
    J.J. Anders, H. Moges, X. Wu, I.D. Erbele, S.L. Alberico, E.K. Saidu, J.T. Smith, B.A. Pryor, In vitro and in vivo optimization of infrared laser treatment for injured peripheral nerves. Lasers Surg. Med. 46, 34–45 (2014)CrossRefGoogle Scholar
  35. 35.
    J.D. Carroll, M.R. Milward, P.R. Cooper, M. Hadis, W.M. Palin, Developments in low level light therapy (LLLT) for dentistry. Dent. Mater. 30, 465–475 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Wu, D. Xing, Intracellular signaling cascades following light irradiation. Laser Photonics Rev. 8, 115–130 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Tschon, S. Incerti-Parenti, S. Cepollaro, L. Checchi, M. Fini, Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. J. Biomed. Opt. 20, 078002 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    P. Cassano, S.R. Petrie, M.R. Hamblin, T.A. Henderson, D.V. Iosifescu, Review of transcranial photobiomodulation for major depressive disorder: targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 3(3), 031404 (2016)Google Scholar
  39. 39.
    G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, 080902 (2014)Google Scholar
  40. 40.
    R. Penjweini, B. Liu, M.M. Kim, T.C. Zhu, Explicit dosimetry for 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy: macroscopic singlet oxygen modeling. J. Biomed. Opt. 20, 128003 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    N.F. Gamaleia, I.O. Shton, Gold mining for PDT: great expectations from tiny nanoparticles. Photodiagn. Photodyn Ther 12, 221–231 (2015)CrossRefGoogle Scholar
  42. 42.
    I. Mfouo-Tynga, H. Abrahamse, Cell death pathways and phthalocyanine as an efficient agent for photodynamic cancer therapy. Intl. J. Molecular Sci. 16, 10228–10241 (2015)CrossRefGoogle Scholar
  43. 43.
    J.L. Boulnois, Photophysical processes in recent medical laser developments: a review. Lasers Med. Sci. 1, 47–66 (1986)CrossRefGoogle Scholar
  44. 44.
    H.Z. Alagha, M. Gülsoy, Photothermal ablation of liver tissue with 1940-nm thulium fiber laser: an ex vivo study on lamb liver. J. Biomed. Opt. 21(1), 015007 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    M.H. Gold, Update on fractional laser technology. J. Clin. Aesthet. Dermatol. 3, 42–50 (2010)Google Scholar
  46. 46.
    G. Deka, K. Okano, F.-J. Kao, Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser. J. Biomed. Optics 19, 011012 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Z. Al-Dujaiti, C.C. Dierickx, Laser treatment of pigmented lesions, Chap. 3, in Laser Dermatology, 2nd edn., ed. by D.J. Goldberg (Springer, Berlin, 2013), pp. 41–64CrossRefGoogle Scholar
  48. 48.
    L. Corcos, S. Dini, D. De Anna, O. Marangoni, E. Ferlaino, T. Procacci, T. Spina, M. Dini, The immediate effects of endovenous diode 808-nm laser in the greater saphenous vein: Morphologic study and clinical implications. J. Vasc. Surg. 41(6), 1018–1024 (2005)CrossRefGoogle Scholar
  49. 49.
    Y.C. Jung, Preliminary experience in facial and body contouring with 1444 nm micropulsed Nd:YAG laser-assisted lipolysis: a review of 24 cases. Laser Ther. 20(1), 39–46 (2011)CrossRefGoogle Scholar
  50. 50.
    P.S. Tsai, P. Blinder, B.J. Migliori, J. Neev, Y. Jin, J.A. Squier, D. Kleinfeld, Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Curr. Opin. Biotechnol. 20, 90–99 (2009)CrossRefGoogle Scholar
  51. 51.
    A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissue. Chem. Rev. 103, 577–644 (2003)CrossRefGoogle Scholar
  52. 52.
    B.S. Biesman, M.P. O’Neil, C. Costner, Rapid, high-fluence multi-pass Q-switched laser treatment of tattoos with a transparent perfluorodecalin-infused patch: A pilot study. Lasers Surg. Med. 47(8), 613–618 (2015)CrossRefGoogle Scholar
  53. 53.
    C.V. Gabel, Femtosecond lasers in biology: nanoscale surgery with ultrafast optics. Contemp. Phys. 49(6), 391–411 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    H. Huang, L.-M. Yang, S. Bai, J. Liu, Smart surgical tool. J. Biomed. Opt. 20, O28001 (2015)CrossRefGoogle Scholar
  55. 55.
    B. Rao, J. Su, D. Chai, D. Chaudhary, Z. Chen, T. Juhasz, Imaging subsurface photodisruption in human sclera with FD-OCT. In: Proceedings SPIE 6429, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, 642910, 12 Feb 2007Google Scholar
  56. 56.
    S.S. Harilal, J.R. Freeman, P.K. Diwakar, A. Hassanein, Femtosecond laser ablation: fundamentals and applications, in Laser-Induced Breakdown Spectroscopy, ed. by S. Musazzi, U. Perini (Springer, Berlin, 2014), pp. 143–166CrossRefGoogle Scholar
  57. 57.
    A. Ozcan, A. Bilenca, A.E. Desjardins, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography images using digital filters. J. Opt. Soc. Am. A 24, 1901–1910 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    D.A. Boas, A.K. Dunn, Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15(1), 011109 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    L.M. Richards, S.M. Shams Kazmi, J.L. Davis, K.E. Olin, A.K. Dunn, Low-cost laser speckle contrast imaging of blood flow using a webcam. Biomed. Opt. Express 4(10), 2269–2283 (2013)CrossRefGoogle Scholar
  60. 60.
    I. Sigal, R. Gad, A.M. Caravaca-Aguirre, Y. Atchia, D.B. Conkey, R. Piestun, O. Levi, Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging. Biomed. Opt. Express 5(1), 123–135 (2014)CrossRefGoogle Scholar
  61. 61.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)CrossRefGoogle Scholar
  62. 62.
    Y. Engelborghs, A.J.W.G. Visser (eds.), Fluorescence Spectroscopy and Microscopy: Methods and Protocols (Springer, New York, 2014)Google Scholar
  63. 63.
    J. Ge, C. Kuang, S.-S. Lee, F.-J. Kao, Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission. Opt. Express 20(27), 28216–28221 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    R.Y. Tsien, The green fluorescent protein. Annual Rev. Biochem. 67, 509–544 (1998)CrossRefGoogle Scholar
  65. 65.
    B. Seefeldt, R. Kasper, T. Seidel, P. Tinnefeld, K.F. Dietz, M. Heilemann, M. Sauer, Fluorescent proteins for single-molecule fluorescence applications. J. Biophotonics 1(1), 74–82 (2008)CrossRefGoogle Scholar
  66. 66.
    D.M. Chudakov, M.V. Matz, S. Lukyanov, K.A. Lukyanov, Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010)CrossRefGoogle Scholar
  67. 67.
    G.-J. Kremers, K.L. Hazelwood, C.S. Murphy, M.W. Davidson, D.W. Piston, Photoconversion in orange and red fluorescent proteins. Nat. Methods 6, 355–358 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations