Advertisement

Biophotonics pp 91-118 | Cite as

Fundamentals of Light Sources

  • Gerd KeiserEmail author
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

A broad selection of light sources is available for the biophotonics UV, visible, or infrared regions. These sources include arc lamps, light emitting diodes, laser diodes, superluminescent diodes, and various types of gas, solid-state, and optical fiber lasers. This chapter first defines terminology used in radiometry, which deals with the measurement of optical radiation. Understanding this terminology is important when determining and specifying the degrees of interaction of light with tissue. Next the characteristics of optical sources for biophotonics are described. This includes the spectrum over which the source emits, the emitted power levels as a function of wavelength, the optical power per unit solid angle emitted in a given direction, the light polarization, and the coherence properties of the emission. In addition, depending on the operating principles of the light source, it can emit light in either a continuous mode or a pulsed mode.

Keywords

Laser Diode Fiber Laser Optical Power Quantum Cascade Laser Optical Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.F. Zalewski, Radiometry and photometry, chap. 34, in Handbook of Optics: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry, eds. by M. Bass, C. DeCusatis, J. Enoch, V. Lakshminaravanan, G. Li, C. MacDonald, V. Mahajan, E. Van Stryland, vol. 2, 3rd edn. (McGraw-Hill, New York, 2010)Google Scholar
  2. 2.
    I. Moreno, LED intensity distribution, paper TuD6, in OSA International Optical Design Conference, Vancouver, CA, June 2006Google Scholar
  3. 3.
    J.M. Palmer, Radiometry and photometry: units and conversions, chap. 7, in Handbook of Optics: Classical Optics, Vision Optics, X-Ray Optics, eds. by M. Bass, J. Enoch, E. Van Stryland, W.L. Wolfe, vol. 3, 2nd edn. (McGraw-Hill, New York, 2000)Google Scholar
  4. 4.
    D. Nakar, A. Malul, D. Feuermann, J.M. Gordon, Radiometric characterization of ultrahigh radiance xenon short-arc discharge lamps. Appl. Opt. 47(2), 224–229 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Newport Corp., DC-Arc-Lamps. www.newport.com, July 2015
  6. 6.
    Hamamatsu Photonics, Super-Quiet Xenon Flash Lamp Series. www.hamamatsu.com, Sept 2013
  7. 7.
    W. Henry, MicroLEDs enabling new generation of fluorescence instruments. Biophotonics 20(3), 25–28 (2013)Google Scholar
  8. 8.
    M.-H. Chang, D. Das, P.V. Varde, M. Pecht, Light emitting diodes reliability review. Microelecton. Reliab. 52, 762–782 (2012)CrossRefGoogle Scholar
  9. 9.
    W.D. van Driel, X.J. Fan, eds., Solid State Lighting Reliability: Components to Systems (Springer, Berlin, 2013)Google Scholar
  10. 10.
    R.-H. Horng, S.-H. Chuang, C.-H. Tien, S.-C. Lin, D.-S. Wuu, High performance GaN-based flip-chip LEDs with different electrode patterns, Optics Express 22(S3), A941–A946 (2014)Google Scholar
  11. 11.
    D.A. Neaman, Semiconductor Physics and Devices, 4th edn. (McGraw-Hill, New York, 2012)Google Scholar
  12. 12.
    S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd edn. (Pearson, Upper Saddle River, NJ, 2013)Google Scholar
  13. 13.
    G. Keiser, Optical Fiber Communications, 4th US edn., 2011; 5th international edn., 2015 (McGraw-Hill, New York)Google Scholar
  14. 14.
    H. Ries, J. Muschaweck, Tailored freeform optical surfaces. J. Opt. Soc. America A 19, 590–595 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L.-T. Chen, G. Keiser, Y.-R. Huang, S.-L. Lee, A simple design approach of a Fresnel lens for creating uniform light-emitting diode light distribution patterns. Fiber Integ. Optics 33(5–6), 360–382 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Peng, A. Juzeniene, J. Chen, L.O. Svaasand, T. Warloe, K.-E. Giercksky, J. Moan, Lasers in medicine, Rep. Prog. Phys. 71, 056701 (2008)Google Scholar
  17. 17.
    B. Kemper, G. von Bally, Coherent laser measurement techniques for medical diagnostics, chap. 9, in Biophotonics, eds. by L. Pavesi, P.M. Fauchet (Springer, Berlin, 2008)Google Scholar
  18. 18.
    R. Riesenberg, A. Wutting, Optical sources, chap. 4, pp. 263–295, in Handbook of Biophotonics, eds. by J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann, vol. 1: Basics and Techniques (Wiley, New York, 2011)Google Scholar
  19. 19.
    A. Müller, S. Marschall, O.B. Jensen, J. Fricke, H. Wenzel, B. Sumpf, P.E. Andersen, Diode laser based light sources for biomedical applications. Laser Photonics Rev. 7(5), 605–627 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Tu, S.A. Boppart, Coherent fiber supercontinuum for biophotonics. Laser Photonics Rev. 7(5), 628–645 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013)CrossRefGoogle Scholar
  22. 22.
    M. Razeghi, High-performance InP-based mid-IR quantum cascade lasers. IEEE J. Sel. Topics Quantum Electron. 15(3), 941–951 (2009)Google Scholar
  23. 23.
    S. Liakat, K.A. Bors, L. Xu, C.M. Woods, J. Doyle, C.F. Gmachi, Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed. Opt. Express 5, 2397–2404 (2014)CrossRefGoogle Scholar
  24. 24.
    T. Watanabe, K. Iwai, T. Katagiri, Y. Matsuura, Synchronous radiation with Er:YAG and Ho:YAG lasers for efficient ablation of hard tissues. Biomed. Opt. Express 1, 337–346 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D.W. Piston, K. Joos, M.S. Hutson, Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed. Opt. Express 2, 1275–1281 (2011)Google Scholar
  26. 26.
    G. Deka, K. Okano, F.-J. Kao, Dynamic photopatterning of cells in situ by Q-switched neodymium-doped yttrium ortho-vanadate laser, J. Biomed. Optics 19, 011012 (2014)Google Scholar
  27. 27.
    K. Baek, W. Deibel, D. Marinov, M. Griessen, M. Dard, A. Bruno, H.-F. Zeilhofer, P. Cattin, P. Juergens, A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg. Med. 47, 426–432 (2015)CrossRefGoogle Scholar
  28. 28.
    P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, K.F. Wall, G. Frith, B. Samson, A.L.G. Carter, Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Topics Quantum Electron. 15, 85–92 (2009)CrossRefGoogle Scholar
  29. 29.
    H. Ahmad, A.Z. Zulkifli, K. Thambiratnam, S.W. Harun, 2.0-μm Q-switched thulium-doped fiber laser with graphene oxide saturable absorber. IEEE Photonics J. 5(4), 1501108 (2013)Google Scholar
  30. 30.
    W. Shi, Q. Fang, X. Zhu, R.A. Norwood, N. Peyghambarian, Fiber lasers and their applications. Appl. Opt. 53(28), 6554–6568 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    L.J. Mortensen, C. Alt, R. Turcotte, M. Masek, T.-M. Liu, D.C. Cote, C. Xu, G. Intini, C.P. Lin, Femtosecond bone ablation with a high repetition rate fiber laser source. Biomed. Opt. Express 6, 32–42 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations