Advertisement

Optical Fibers for Biophotonics Applications

  • Gerd KeiserEmail author
Chapter
  • 2.5k Downloads
Part of the Graduate Texts in Physics book series (GTP)

Abstract

Major challenges in biophotonics applications to the life sciences include how to collect emitted low-power light (down to the nW range) from a tissue specimen and transmit it to a photon detector, how to deliver a wide range of optical power levels to a tissue area or section during different categories of therapeutic healthcare sessions, and how to access a diagnostic or treatment area within a living being with an optical detection probe or a radiant energy source in the least invasive manner. The unique physical and light-transmission properties of optical fibers enable them to help resolve such implementation issues. This chapter provides the background that is necessary to understand how optical fibers function and describes various categories of fibers that are commercially available for use in biophotonics.

Keywords

Optical Fiber Photonic Crystal Fiber Bragg Wavelength Core Refractive Index Radiant Energy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, NJ, 2007)Google Scholar
  2. 2.
    C.L. Chen, Foundations of Guided-Wave Optics (Wiley, Hoboken, NJ, 2007)Google Scholar
  3. 3.
    W.H. Hayt Jr., J.A. Buck, Engineering Electromagnetics, 8th edn. (McGraw-Hill, New York, 2012)Google Scholar
  4. 4.
    S.O. Kasap, Optoelectronics and Photonics: principles and Practices, 2nd edn. (Prentice-Hall, Englewood Cliffs, New Jersey, 2013)Google Scholar
  5. 5.
    G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, 080902 (2014)Google Scholar
  6. 6.
    G. Keiser, Optical Fiber Communications, McGraw-Hill, 4th US edn, 2011; 5th international edn (2015)Google Scholar
  7. 7.
    S.T. Jung, D.H. Shin, Y.H. Lee, Near-field fiber tip to handle high input power more than 150 mW. Appl. Phys. Lett. 77(17), 2638–2640 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    M. De Rosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, High-power performance of single-mode fiber-optic connectors. J. Lightw. Technol. 20(5), 879–885 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    K. Hogari, K. Kurokawa, I. Sankawa, Influence of high-optical power light launched into optical fibers in MT connector. J. Lightw. Technol. 21(12) (2003)Google Scholar
  10. 10.
    Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse generation in single-mode fiber-optic connectors. IEEE Photon. Technol. Lett. 16(1), 174–176 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Stolov, B.E. Slyman, D.T. Burgess, A.S. Hokansson, J. Li, R.S. Allen, Effects of sterilization methods on key properties of specialty optical fibers used in medical devices. Proceedings of the SPIE, vol. 8576, p. 857606 (2013)Google Scholar
  12. 12.
    R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic Press, New York, 2010)Google Scholar
  13. 13.
    E. Al-Fakih, N.A. Abu Osman, F.R.M. Adikan, The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Dziuda, F.W. Skibniewski, M. Krej, P.A. Baran, Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 18(5), 057006 (2013)Google Scholar
  15. 15.
    V. Khalilov, J.H. Shannon, R.J. Timmerman, Improved deep UV fiber for medical and spectroscopy applications. Proceedings of the SPIE, vol. 8938, p. 89380A (2014)Google Scholar
  16. 16.
    T. Tobisch, H. Ohlmeyer, H. Zimmermann, S. Prein, J. Krichhof, S. Unger, M. Belz, K.F. Klein, Improvement of optical damage in specialty fiber at 266 nm wavelength. Proceedings of the SPIE, vol. 8938, p. 89380G (2014)Google Scholar
  17. 17.
    F. Gebert, M.H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N.Y. Joly, P.O. Schmidt, P.St.J. Russell, Damage-free single-mode transmission of deep-UV light in hollow-core PCF, Opt. Express 22, 15388–15396 (2014)Google Scholar
  18. 18.
    M.-J. Li, P. Tandon, D.C. Bookbinder, S.R. Bickham, M.A. McDermott, R.B. Desorcie, D.A. Nolan, J.J. Johnson, K.A. Lewis, J.J. Englebert, Ultra-low bending loss single-mode fiber for FTTH. J. Lightw. Technol. 27(3), 376–382 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T. Matsui, K. Nakajima, Y. Goto, T. Shimizu, T. Kurashima, Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics. J. Lightw. Technol. 29(17), 2499–2505 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D. Kusakari, H. Hazama, R. Kawaguchi, K. Ishii, K. Awazu, Evaluation of the bending loss of the hollow optical fiber for application of the carbon dioxide laser to endoscopic therapy. Opt. Photon. J. 3, 14–19 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    V.V. Tuchin, Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)Google Scholar
  22. 22.
    S. Lemire-Renaud, M. Strupler, F. Benboujja, N. Godbout, C. Boudoux, Double-clad fiber with a tapered end for confocal endomicroscopy. Biomed. Opt. Exp. 2, 2961–2972 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, Z. Chen, Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J. Biomed. Opt. 17, 070501 (2012)Google Scholar
  24. 24.
    K. Beaudette, H.W. Bac, W.-J. Madore, M. Villiger, N. Gadbout, B.E. Bouma, C. Boudoux, Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler. Biomed. Opt. Exp. 6, 1293–1303 (2015)CrossRefGoogle Scholar
  25. 25.
    B.J. Skutnik, B. Foley, K. Moran, Hard plastic clad silica fibers for near UV applications. Proc. SPIE 5691, 23–29 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    T. Watanabe, Y. Matsuura, Side-firing sealing caps for hollow optical fibers. Lasers Surg. Med. 38(8), 792–797 (2006)CrossRefGoogle Scholar
  27. 27.
    F. Yu, W.J. Wadsworth, J.C. Knight, Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 20(10), 11153–11158 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    C.M. Bledt, J.A. Harrington, J.M. Kriesel, Loss and modal properties of Ag/AgI hollow glass waveguides. Appl. Opt. 51, 3114–3119 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    T. Monti, G. Gradoni, Hollow-core coaxial fiber sensor for biophotonic detection. J. Sel. Topics Quant. Electron. 20(2), 6900409 (2014)Google Scholar
  30. 30.
    P. John Russell, Photonic crystal fibers. J. Lightw. Technol. 24(12), 4729–4749 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers (Springer, New York, 2007)zbMATHGoogle Scholar
  32. 32.
    M. Large, L. Poladian, G. Barton, M.A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, New York, 2008)CrossRefGoogle Scholar
  33. 33.
    D. Threm, Y. Nazirizadeh, M. Gerken, Photonic crystal biosensor towards on-chip integration. J. Biophotonics 5(8–9), 601–616 (2012)CrossRefGoogle Scholar
  34. 34.
    P. Ghenuche, S. Rammler, N.Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P.St. John Russell, H. Rigneault, Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy. Opt. Lett. 37(21), 4371–4373 (2012)Google Scholar
  35. 35.
    T. Gong, N. Zhang, K.V. Kong, D. Goh, C. Ying, J.-L. Auguste, P.P. Shum, L. Wei, G. Humbert, K.-T. Yong, M. Olivo, Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor, J. Biophotonics (2015)Google Scholar
  36. 36.
    J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol. 7(2), 101–140 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Handbook, 2nd edn. (Springer, Berlin, 2008)Google Scholar
  38. 38.
    G. Zhou, C.-F.J. Pun, H.-Y. Tam, A.C.L. Wong, C. Lu, P.K.A. Wai, Single-mode perfluorinated polymer optical fibers with refractive index of 1.34 for biomedical applications. IEEE Photon. Technol. Lett. 22(2), 106–108 (2010)Google Scholar
  39. 39.
    Y. Koike, K. Koike, Progress in low-loss and high-bandwidth plastic optical fibers, J. Polym. Sci. B Polym. Phys. 49, 2–17 (2011)Google Scholar
  40. 40.
    L. Bilro, N. Alberto, J.L. Pinto, R. Nogueira, Optical sensors based on plastic fibers. Sensors 12, 12184–12207 (2012)CrossRefGoogle Scholar
  41. 41.
    J. Spigulis, Side-emitting fibers brighten our world. Opt. Photonics News 16, 36–39 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    J. Shen, C. Chui, X. Tao, Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 4(12), 2925–2937 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Krehel, M. Wolf, L.F. Boesel, R.M. Rossi, G.-L. Bona, L.J. Scherer, Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 5(8), 2537–2547 (2014)CrossRefGoogle Scholar
  44. 44.
    I. Peshkoa, V. Rubtsovb, L. Vesselovc, G. Sigala, H. Laks, Fiber photo-catheters for laser treatment of atrial fibrillation. Opt. Lasers Eng. 45, 495–502 (2007)CrossRefGoogle Scholar
  45. 45.
    R. George, L.J. Walsh, Performance assessment of novel side firing flexible optical fibers for dental applications. Lasers Surg. Med. 41, 214–221 (2009)CrossRefGoogle Scholar
  46. 46.
    R. Mishra, A. Shukla, D. Kremenakova, J. Militky, Surface modification of polymer optical fibers for enhanced side emission behavior. Fibers Polym. 14, 1468–1471 (2013)CrossRefGoogle Scholar
  47. 47.
    J.A. Harrington, Infrared fibers and their applications (SPIE Press, 2004)Google Scholar
  48. 48.
    M. Saad, Heavy metal fluoride glass fibers and their applications. Proc. SPIE 8307, 83070N (2011)ADSCrossRefGoogle Scholar
  49. 49.
    J. Bei, T.M. Monro, A. Hemming, H. Ebendorff-Heidepriem, Fabrication of extruded fluoroindate optical fibers. Opt. Mater. Express 3(3), 318–328 (2013)CrossRefGoogle Scholar
  50. 50.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)ADSGoogle Scholar
  51. 51.
    D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain, J. Zavadil, Heavy metal oxide glasses: preparation and physical properties. J. Non-Cryst. Solids 284, 288–295 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    C.A. Damin, A.J. Sommer, Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy probe. Appl. Spectros. 67(11), 1252–1263 (2013)Google Scholar
  53. 53.
    S. Israeli, A. Katzir, Attenuation, absorption, and scattering in silver halide crystals and fibers in the mid-infrared. J. Appl. Phys. 115, 023104 (2014)Google Scholar
  54. 54.
    E. Rave, A. Katzir, Ordered bundles of infrared transmitting silver halide fibers: attenuation, resolution and crosstalk in long and flexible bundles. Opt. Eng. 41, 1467–1468 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    H.H. Gorris, T.M. Blicharz, D.R. Walt, Optical-fiber bundles. The FEBS J. 274(21), 5462–5470 (2007)CrossRefGoogle Scholar
  56. 56.
    J.D. Enderle, J.D. Bronzino, Biomedical optics and lasers. Chap. 17 in Introduction to Biomedical Engineering, 3rd edn. (Academic Press, New York, 2012)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations