Skip to main content

Optical Fibers for Biophotonics Applications

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3832 Accesses

Abstract

Major challenges in biophotonics applications to the life sciences include how to collect emitted low-power light (down to the nW range) from a tissue specimen and transmit it to a photon detector, how to deliver a wide range of optical power levels to a tissue area or section during different categories of therapeutic healthcare sessions, and how to access a diagnostic or treatment area within a living being with an optical detection probe or a radiant energy source in the least invasive manner. The unique physical and light-transmission properties of optical fibers enable them to help resolve such implementation issues. This chapter provides the background that is necessary to understand how optical fibers function and describes various categories of fibers that are commercially available for use in biophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  2. C.L. Chen, Foundations of Guided-Wave Optics (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  3. W.H. Hayt Jr., J.A. Buck, Engineering Electromagnetics, 8th edn. (McGraw-Hill, New York, 2012)

    Google Scholar 

  4. S.O. Kasap, Optoelectronics and Photonics: principles and Practices, 2nd edn. (Prentice-Hall, Englewood Cliffs, New Jersey, 2013)

    Google Scholar 

  5. G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Opt. 19, 080902 (2014)

    Google Scholar 

  6. G. Keiser, Optical Fiber Communications, McGraw-Hill, 4th US edn, 2011; 5th international edn (2015)

    Google Scholar 

  7. S.T. Jung, D.H. Shin, Y.H. Lee, Near-field fiber tip to handle high input power more than 150 mW. Appl. Phys. Lett. 77(17), 2638–2640 (2000)

    Article  ADS  Google Scholar 

  8. M. De Rosa, J. Carberry, V. Bhagavatula, K. Wagner, C. Saravanos, High-power performance of single-mode fiber-optic connectors. J. Lightw. Technol. 20(5), 879–885 (2002)

    Article  ADS  Google Scholar 

  9. K. Hogari, K. Kurokawa, I. Sankawa, Influence of high-optical power light launched into optical fibers in MT connector. J. Lightw. Technol. 21(12) (2003)

    Google Scholar 

  10. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse generation in single-mode fiber-optic connectors. IEEE Photon. Technol. Lett. 16(1), 174–176 (2004)

    Article  ADS  Google Scholar 

  11. A.A. Stolov, B.E. Slyman, D.T. Burgess, A.S. Hokansson, J. Li, R.S. Allen, Effects of sterilization methods on key properties of specialty optical fibers used in medical devices. Proceedings of the SPIE, vol. 8576, p. 857606 (2013)

    Google Scholar 

  12. R. Kashyap, Fiber Bragg Gratings, 2nd edn. (Academic Press, New York, 2010)

    Google Scholar 

  13. E. Al-Fakih, N.A. Abu Osman, F.R.M. Adikan, The use of fiber Bragg grating sensors in biomechanics and rehabilitation applications: the state-of-the-art and ongoing research topics. Sensors 12, 12890–12926 (2012)

    Article  Google Scholar 

  14. L. Dziuda, F.W. Skibniewski, M. Krej, P.A. Baran, Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations. J. Biomed. Opt. 18(5), 057006 (2013)

    Google Scholar 

  15. V. Khalilov, J.H. Shannon, R.J. Timmerman, Improved deep UV fiber for medical and spectroscopy applications. Proceedings of the SPIE, vol. 8938, p. 89380A (2014)

    Google Scholar 

  16. T. Tobisch, H. Ohlmeyer, H. Zimmermann, S. Prein, J. Krichhof, S. Unger, M. Belz, K.F. Klein, Improvement of optical damage in specialty fiber at 266 nm wavelength. Proceedings of the SPIE, vol. 8938, p. 89380G (2014)

    Google Scholar 

  17. F. Gebert, M.H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N.Y. Joly, P.O. Schmidt, P.St.J. Russell, Damage-free single-mode transmission of deep-UV light in hollow-core PCF, Opt. Express 22, 15388–15396 (2014)

    Google Scholar 

  18. M.-J. Li, P. Tandon, D.C. Bookbinder, S.R. Bickham, M.A. McDermott, R.B. Desorcie, D.A. Nolan, J.J. Johnson, K.A. Lewis, J.J. Englebert, Ultra-low bending loss single-mode fiber for FTTH. J. Lightw. Technol. 27(3), 376–382 (2009)

    Article  ADS  Google Scholar 

  19. T. Matsui, K. Nakajima, Y. Goto, T. Shimizu, T. Kurashima, Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics. J. Lightw. Technol. 29(17), 2499–2505 (2011)

    Article  ADS  Google Scholar 

  20. D. Kusakari, H. Hazama, R. Kawaguchi, K. Ishii, K. Awazu, Evaluation of the bending loss of the hollow optical fiber for application of the carbon dioxide laser to endoscopic therapy. Opt. Photon. J. 3, 14–19 (2013)

    Article  ADS  Google Scholar 

  21. V.V. Tuchin, Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)

    Google Scholar 

  22. S. Lemire-Renaud, M. Strupler, F. Benboujja, N. Godbout, C. Boudoux, Double-clad fiber with a tapered end for confocal endomicroscopy. Biomed. Opt. Exp. 2, 2961–2972 (2011)

    Article  Google Scholar 

  23. S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, Z. Chen, Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J. Biomed. Opt. 17, 070501 (2012)

    Google Scholar 

  24. K. Beaudette, H.W. Bac, W.-J. Madore, M. Villiger, N. Gadbout, B.E. Bouma, C. Boudoux, Laser tissue coagulation and concurrent optical coherence tomography through a double-clad fiber coupler. Biomed. Opt. Exp. 6, 1293–1303 (2015)

    Article  Google Scholar 

  25. B.J. Skutnik, B. Foley, K. Moran, Hard plastic clad silica fibers for near UV applications. Proc. SPIE 5691, 23–29 (2005)

    Article  ADS  Google Scholar 

  26. T. Watanabe, Y. Matsuura, Side-firing sealing caps for hollow optical fibers. Lasers Surg. Med. 38(8), 792–797 (2006)

    Article  Google Scholar 

  27. F. Yu, W.J. Wadsworth, J.C. Knight, Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 20(10), 11153–11158 (2012)

    Article  ADS  Google Scholar 

  28. C.M. Bledt, J.A. Harrington, J.M. Kriesel, Loss and modal properties of Ag/AgI hollow glass waveguides. Appl. Opt. 51, 3114–3119 (2012)

    Article  ADS  Google Scholar 

  29. T. Monti, G. Gradoni, Hollow-core coaxial fiber sensor for biophotonic detection. J. Sel. Topics Quant. Electron. 20(2), 6900409 (2014)

    Google Scholar 

  30. P. John Russell, Photonic crystal fibers. J. Lightw. Technol. 24(12), 4729–4749 (2006)

    Article  ADS  Google Scholar 

  31. F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers (Springer, New York, 2007)

    MATH  Google Scholar 

  32. M. Large, L. Poladian, G. Barton, M.A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, New York, 2008)

    Book  Google Scholar 

  33. D. Threm, Y. Nazirizadeh, M. Gerken, Photonic crystal biosensor towards on-chip integration. J. Biophotonics 5(8–9), 601–616 (2012)

    Article  Google Scholar 

  34. P. Ghenuche, S. Rammler, N.Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P.St. John Russell, H. Rigneault, Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy. Opt. Lett. 37(21), 4371–4373 (2012)

    Google Scholar 

  35. T. Gong, N. Zhang, K.V. Kong, D. Goh, C. Ying, J.-L. Auguste, P.P. Shum, L. Wei, G. Humbert, K.-T. Yong, M. Olivo, Rapid SERS monitoring of lipid-peroxidation-derived protein modifications in cells using photonic crystal fiber sensor, J. Biophotonics (2015)

    Google Scholar 

  36. J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol. 7(2), 101–140 (2001)

    Article  ADS  Google Scholar 

  37. O. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Handbook, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  38. G. Zhou, C.-F.J. Pun, H.-Y. Tam, A.C.L. Wong, C. Lu, P.K.A. Wai, Single-mode perfluorinated polymer optical fibers with refractive index of 1.34 for biomedical applications. IEEE Photon. Technol. Lett. 22(2), 106–108 (2010)

    Google Scholar 

  39. Y. Koike, K. Koike, Progress in low-loss and high-bandwidth plastic optical fibers, J. Polym. Sci. B Polym. Phys. 49, 2–17 (2011)

    Google Scholar 

  40. L. Bilro, N. Alberto, J.L. Pinto, R. Nogueira, Optical sensors based on plastic fibers. Sensors 12, 12184–12207 (2012)

    Article  Google Scholar 

  41. J. Spigulis, Side-emitting fibers brighten our world. Opt. Photonics News 16, 36–39 (2005)

    Article  ADS  Google Scholar 

  42. J. Shen, C. Chui, X. Tao, Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 4(12), 2925–2937 (2013)

    Article  Google Scholar 

  43. M. Krehel, M. Wolf, L.F. Boesel, R.M. Rossi, G.-L. Bona, L.J. Scherer, Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 5(8), 2537–2547 (2014)

    Article  Google Scholar 

  44. I. Peshkoa, V. Rubtsovb, L. Vesselovc, G. Sigala, H. Laks, Fiber photo-catheters for laser treatment of atrial fibrillation. Opt. Lasers Eng. 45, 495–502 (2007)

    Article  Google Scholar 

  45. R. George, L.J. Walsh, Performance assessment of novel side firing flexible optical fibers for dental applications. Lasers Surg. Med. 41, 214–221 (2009)

    Article  Google Scholar 

  46. R. Mishra, A. Shukla, D. Kremenakova, J. Militky, Surface modification of polymer optical fibers for enhanced side emission behavior. Fibers Polym. 14, 1468–1471 (2013)

    Article  Google Scholar 

  47. J.A. Harrington, Infrared fibers and their applications (SPIE Press, 2004)

    Google Scholar 

  48. M. Saad, Heavy metal fluoride glass fibers and their applications. Proc. SPIE 8307, 83070N (2011)

    Article  ADS  Google Scholar 

  49. J. Bei, T.M. Monro, A. Hemming, H. Ebendorff-Heidepriem, Fabrication of extruded fluoroindate optical fibers. Opt. Mater. Express 3(3), 318–328 (2013)

    Article  Google Scholar 

  50. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)

    ADS  Google Scholar 

  51. D. Lezal, J. Pedlikova, P. Kostka, J. Bludska, M. Poulain, J. Zavadil, Heavy metal oxide glasses: preparation and physical properties. J. Non-Cryst. Solids 284, 288–295 (2001)

    Article  ADS  Google Scholar 

  52. C.A. Damin, A.J. Sommer, Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy probe. Appl. Spectros. 67(11), 1252–1263 (2013)

    Google Scholar 

  53. S. Israeli, A. Katzir, Attenuation, absorption, and scattering in silver halide crystals and fibers in the mid-infrared. J. Appl. Phys. 115, 023104 (2014)

    Google Scholar 

  54. E. Rave, A. Katzir, Ordered bundles of infrared transmitting silver halide fibers: attenuation, resolution and crosstalk in long and flexible bundles. Opt. Eng. 41, 1467–1468 (2002)

    Article  ADS  Google Scholar 

  55. H.H. Gorris, T.M. Blicharz, D.R. Walt, Optical-fiber bundles. The FEBS J. 274(21), 5462–5470 (2007)

    Article  Google Scholar 

  56. J.D. Enderle, J.D. Bronzino, Biomedical optics and lasers. Chap. 17 in Introduction to Biomedical Engineering, 3rd edn. (Academic Press, New York, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Optical Fibers for Biophotonics Applications. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_3

Download citation

Publish with us

Policies and ethics