Biophotonics pp 323-337 | Cite as

Biophotonics Technology Applications

  • Gerd KeiserEmail author
Part of the Graduate Texts in Physics book series (GTP)


Biophotonics technologies are widely used in biomedical research, in the detection and treatment of diseases and health conditions, and in point-of-care healthcare clinics. This chapter describes advanced tools and implementations such as optical tweezers and optical trapping techniques that enable microscopic manipulation of cells and molecules for exploring biological materials and functions in the micrometer and nanometer regime, miniaturized photonics-based instrumentation functions and devices such as the lab-on-a-chip and lab-on-fiber technologies, microscope-in-a-needle concepts to enable 3-dimensional scanning of malignant tissue within the body, and optogenetics procedures which attempt to explore and understand the mechanisms of neuronal activity in organs such as the brain and the heart.


Microfluidic Device Fiber Bragg Grating Microfluidic Chip Gradient Force Optical Tweezer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Ashkin, History of optical trapping and manipulation of small-neutral particel, atoms, and molecules. IEEE J. Sel. Topics Quantum Electron. 6(6), 841–856 (2000)CrossRefGoogle Scholar
  2. 2.
    A. Chiou, M.T. Wei, Y.Q. Chen, T.Y. Tseng, S.L. Liu, A. Karmenyan, C.H. Lin, Optical trapping and manipulation for biomedical applications, chap. 14, in Biophotonics, ed. by L. Pavesi, P.M. Fauchet (Springer, New York, 2008)Google Scholar
  3. 3.
    D.J. Stevenson, F. Gunn-Moore, K. Dholakia, Light forces the pace: optical manipulation for biophotonics J. Biomed. Opt. 15(4), 041503 (2010)Google Scholar
  4. 4.
    I. Verdeny, A. Farré, J. Mas, C. López-Quesada, E. Martín-Badosa, M. Montes-Usategui, Optical trapping: a review of essential concepts. Opt. Pura Apl. 44(3), 527–551 (2011)Google Scholar
  5. 5.
    P.M. Bendix, L. Jauffred, K. Norregaard, L. B. Oddershede, Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Topics Quantum Electron. 20(3), article 4800112 (2014)Google Scholar
  6. 6.
    J.-B. Decombe, S.K. Mondal, D. Kumbhakar, S.S. Pal, and J. Fick, Single and multiple particle trapping using non-Gaussian beams from optical fiber nanoantennas. IEEE J. Sel. Topics Quantum Electron, 21(4), article 4500106 (2015)Google Scholar
  7. 7.
    C. Pacoret S. Régnier, Invited Article: a review of haptic optical tweezers for an interactive microworld exploration. Rev. Sci. Instrum, 84, article 081301 (2013)Google Scholar
  8. 8.
    I. Heller, T P. Hoekstra, G.A. King, E.J.G. Peterman, G.J.L. Wuite, Optical tweezers analysis of DNA–protein complexes. Chem. Rev, 114(6), 3087–3119 (2014)Google Scholar
  9. 9.
    D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, T. Huser, Rapid 3D fluorescence imaging of individual optically trapped living immune cells. J. Biophotonics 8(3), 208–216 (2015)CrossRefGoogle Scholar
  10. 10.
    A.J. Crick, M. Theron, T. Tiffert, V.L. Lew, P. Cicuta, J.C. Rayner, Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys. J. 107( 4), 846–853 (2014)Google Scholar
  11. 11.
    J. Mas, A. Farré, J. Cuadros, I. Juvells, A. Carnicer, Understanding optical trapping phenomena: a simulation for undergraduates. IEEE T. Educ. 54, 133–140 (2011)CrossRefGoogle Scholar
  12. 12.
    F.A. Gomez, Biological Applications of Microfluidics (Wiley, Hoboken, NJ, 2008)Google Scholar
  13. 13.
    C. Lu, S.S. Verbridge, Microfluidic Methods for Molecular Biology (Springer, 2016)Google Scholar
  14. 14.
    B. Lin (ed.), Microfluidics (Springer, Berlin, 2011)Google Scholar
  15. 15.
    Microfluidic ChipShop, Lab-on-a-Chip Catalogue (Jena, Germany, July 2015)
  16. 16.
    M.W. Collins, C.S. König (eds.), Micro and Nano Flow Systems for Bioanalysis (Springer, New York, 2013)Google Scholar
  17. 17.
    S. Unterkofler, M K. Garbos, T.G. Euser, P.St.J. Russell, Long-distance laser propulsion and deformation monitoring of cells in optofluidic photonic crystal fiber, J. Biophotonics, 6(9), 743–752 (2013)Google Scholar
  18. 18.
    G. Testa, G. Persichetti, P.M. Sarro, R. Bernini, A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomed. Opt. Express, 5(2), 417–426 (2014)Google Scholar
  19. 19.
    F.F. Tao, X. Xiao, K.F. Lei, I.-C. Lee, Paper-based cell culture microfluidic system. BioChip J, 9(2), 97–104 (2015)Google Scholar
  20. 20.
    A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol., 19(6), 772–784 (2013)Google Scholar
  21. 21.
    M. Consales, M. Pisco, A. Cusano, Review: lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors 2(4), 289–314 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    J. Albert, A lab on fiber. IEEE Spectr. 51, 48–53 (2014)CrossRefGoogle Scholar
  23. 23.
    R.S. Pillai, D. Lorenser, D.D. Sampson, Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19(8), 7213–7221 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    X. Yang, D. Lorenser, R.A. McLaughlin, R.W. Kirk, M. Edmond, M.C. Simpson, M.D. Grounds, D.D. Sampson, Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express 5(1), 136–148 (2014)CrossRefGoogle Scholar
  25. 25.
    W.C. Kuo, J. Kim, N.D. Shemonski, E.J. Chaney, D.R. Spillman Jr., S.A. Boppart, Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. Biomed. Opt. Express 3(6), 1149–1161 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Song, D.Y. Park, P.L. Gehlbach, S.J. Park, J.U. Kang, Fiber-optic OCT sensor guided SMART micro-forceps for microsurgery. Biomed. Opt. Express, 4(7), 1045–1050 (2013)Google Scholar
  27. 27.
    M.R. Monroe, G.G. Daaboul, A. Tuysuzoglu, C.A. Lopez, F.F. Little, M.S. Ünlü, Single nanoparticle detection for multiplexed protein diagnosis with attomolar sensitivity in serum and unprocessed whole blood. Anal. Chem. 85, 3698–3706 (2013)CrossRefGoogle Scholar
  28. 28.
    M.S. Ünlü, Digital detection of nanoparticles: viral diagnostics and multiplexed protein and nucleic acid assays. MRS Proc, 1720 article mrsf14-1720-d01-01 (2015)Google Scholar
  29. 29.
    D. Sevenler, N.D. Ünlü, M.S. Ünlü, Nanoparticle biosensing with interferometric reflectance imaging, ed. by M.C. Vestergaard, K. Kerman, I.M. Hsing, and E. Tamiya, Nanobiosensors and Nanobioanalyses, (Springer, 2015) 81–95Google Scholar
  30. 30.
    F. Zhang, V. Gradinaru, A.R. Adamantidis, R. Durand, R.D. Airan, L. de Lecea, K. Deisseroth, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protocols 5(3), 439–456 (2010)CrossRefGoogle Scholar
  31. 31.
    E. Ferenczi, K. Deisseroth, Illuminating next-generation brain therapies. Nat. Neurosci. 19, 414–416 (2016)Google Scholar
  32. 32.
    T.N. Lerner, L. Ye, K. Deisseroth, Communication in neural circuits: Tools, opportunities, and challenges. Cell 164, 1136–1165 (2016)Google Scholar
  33. 33.
    M. Hashimoto, A. Hata, T. Miyata, H. Hirase, Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics, 1(1), article 011002 (2014)Google Scholar
  34. 34.
    J.M. Cayce, J.D. Wells, J.D. Malphrus, C. Kao, S. Thomsen, N.B. Tulipan, P.E. Konrad, E.D. Jansen, A. Mahadevan-Jansen, Infrared neural stimulation of human spinal nerve roots in vivo. Neurophotonics, 2(1), article 015007 (2015)Google Scholar
  35. 35.
    C.M. Aasted, M.A. Yücel, R.J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M.P. Petkov, D. Borsook, I. Dan, D.A. Boas, Anatomical guidance for functional near-infrared spectroscopy: atlasViewer tutorial. Neurophotonics, 2(2), 020801 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations