Skip to main content

Biophotonics Technology Applications

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3736 Accesses

Abstract

Biophotonics technologies are widely used in biomedical research, in the detection and treatment of diseases and health conditions, and in point-of-care healthcare clinics. This chapter describes advanced tools and implementations such as optical tweezers and optical trapping techniques that enable microscopic manipulation of cells and molecules for exploring biological materials and functions in the micrometer and nanometer regime, miniaturized photonics-based instrumentation functions and devices such as the lab-on-a-chip and lab-on-fiber technologies, microscope-in-a-needle concepts to enable 3-dimensional scanning of malignant tissue within the body, and optogenetics procedures which attempt to explore and understand the mechanisms of neuronal activity in organs such as the brain and the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ashkin, History of optical trapping and manipulation of small-neutral particel, atoms, and molecules. IEEE J. Sel. Topics Quantum Electron. 6(6), 841–856 (2000)

    Article  Google Scholar 

  2. A. Chiou, M.T. Wei, Y.Q. Chen, T.Y. Tseng, S.L. Liu, A. Karmenyan, C.H. Lin, Optical trapping and manipulation for biomedical applications, chap. 14, in Biophotonics, ed. by L. Pavesi, P.M. Fauchet (Springer, New York, 2008)

    Google Scholar 

  3. D.J. Stevenson, F. Gunn-Moore, K. Dholakia, Light forces the pace: optical manipulation for biophotonics J. Biomed. Opt. 15(4), 041503 (2010)

    Google Scholar 

  4. I. Verdeny, A. Farré, J. Mas, C. López-Quesada, E. Martín-Badosa, M. Montes-Usategui, Optical trapping: a review of essential concepts. Opt. Pura Apl. 44(3), 527–551 (2011)

    Google Scholar 

  5. P.M. Bendix, L. Jauffred, K. Norregaard, L. B. Oddershede, Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Topics Quantum Electron. 20(3), article 4800112 (2014)

    Google Scholar 

  6. J.-B. Decombe, S.K. Mondal, D. Kumbhakar, S.S. Pal, and J. Fick, Single and multiple particle trapping using non-Gaussian beams from optical fiber nanoantennas. IEEE J. Sel. Topics Quantum Electron, 21(4), article 4500106 (2015)

    Google Scholar 

  7. C. Pacoret S. Régnier, Invited Article: a review of haptic optical tweezers for an interactive microworld exploration. Rev. Sci. Instrum, 84, article 081301 (2013)

    Google Scholar 

  8. I. Heller, T P. Hoekstra, G.A. King, E.J.G. Peterman, G.J.L. Wuite, Optical tweezers analysis of DNA–protein complexes. Chem. Rev, 114(6), 3087–3119 (2014)

    Google Scholar 

  9. D. Wolfson, M. Steck, M. Persson, G. McNerney, A. Popovich, M. Goksör, T. Huser, Rapid 3D fluorescence imaging of individual optically trapped living immune cells. J. Biophotonics 8(3), 208–216 (2015)

    Article  Google Scholar 

  10. A.J. Crick, M. Theron, T. Tiffert, V.L. Lew, P. Cicuta, J.C. Rayner, Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys. J. 107( 4), 846–853 (2014)

    Google Scholar 

  11. J. Mas, A. Farré, J. Cuadros, I. Juvells, A. Carnicer, Understanding optical trapping phenomena: a simulation for undergraduates. IEEE T. Educ. 54, 133–140 (2011)

    Article  Google Scholar 

  12. F.A. Gomez, Biological Applications of Microfluidics (Wiley, Hoboken, NJ, 2008)

    Google Scholar 

  13. C. Lu, S.S. Verbridge, Microfluidic Methods for Molecular Biology (Springer, 2016)

    Google Scholar 

  14. B. Lin (ed.), Microfluidics (Springer, Berlin, 2011)

    Google Scholar 

  15. Microfluidic ChipShop, Lab-on-a-Chip Catalogue (Jena, Germany, July 2015) www.microfluidic-ChipShop.com

  16. M.W. Collins, C.S. König (eds.), Micro and Nano Flow Systems for Bioanalysis (Springer, New York, 2013)

    Google Scholar 

  17. S. Unterkofler, M K. Garbos, T.G. Euser, P.St.J. Russell, Long-distance laser propulsion and deformation monitoring of cells in optofluidic photonic crystal fiber, J. Biophotonics, 6(9), 743–752 (2013)

    Google Scholar 

  18. G. Testa, G. Persichetti, P.M. Sarro, R. Bernini, A hybrid silicon-PDMS optofluidic platform for sensing applications. Biomed. Opt. Express, 5(2), 417–426 (2014)

    Google Scholar 

  19. F.F. Tao, X. Xiao, K.F. Lei, I.-C. Lee, Paper-based cell culture microfluidic system. BioChip J, 9(2), 97–104 (2015)

    Google Scholar 

  20. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, A. Cusano, Lab-on-fiber devices as an all around platform for sensing. Opt. Fiber Technol., 19(6), 772–784 (2013)

    Google Scholar 

  21. M. Consales, M. Pisco, A. Cusano, Review: lab-on-fiber technology: a new avenue for optical nanosensors. Photonic Sensors 2(4), 289–314 (2012)

    Article  ADS  Google Scholar 

  22. J. Albert, A lab on fiber. IEEE Spectr. 51, 48–53 (2014)

    Article  Google Scholar 

  23. R.S. Pillai, D. Lorenser, D.D. Sampson, Deep-tissue access with confocal fluorescence microendoscopy through hypodermic needles. Opt. Express 19(8), 7213–7221 (2011)

    Article  ADS  Google Scholar 

  24. X. Yang, D. Lorenser, R.A. McLaughlin, R.W. Kirk, M. Edmond, M.C. Simpson, M.D. Grounds, D.D. Sampson, Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe. Biomed. Opt. Express 5(1), 136–148 (2014)

    Article  Google Scholar 

  25. W.C. Kuo, J. Kim, N.D. Shemonski, E.J. Chaney, D.R. Spillman Jr., S.A. Boppart, Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. Biomed. Opt. Express 3(6), 1149–1161 (2012)

    Article  Google Scholar 

  26. C. Song, D.Y. Park, P.L. Gehlbach, S.J. Park, J.U. Kang, Fiber-optic OCT sensor guided SMART micro-forceps for microsurgery. Biomed. Opt. Express, 4(7), 1045–1050 (2013)

    Google Scholar 

  27. M.R. Monroe, G.G. Daaboul, A. Tuysuzoglu, C.A. Lopez, F.F. Little, M.S. Ünlü, Single nanoparticle detection for multiplexed protein diagnosis with attomolar sensitivity in serum and unprocessed whole blood. Anal. Chem. 85, 3698–3706 (2013)

    Article  Google Scholar 

  28. M.S. Ünlü, Digital detection of nanoparticles: viral diagnostics and multiplexed protein and nucleic acid assays. MRS Proc, 1720 article mrsf14-1720-d01-01 (2015)

    Google Scholar 

  29. D. Sevenler, N.D. Ünlü, M.S. Ünlü, Nanoparticle biosensing with interferometric reflectance imaging, ed. by M.C. Vestergaard, K. Kerman, I.M. Hsing, and E. Tamiya, Nanobiosensors and Nanobioanalyses, (Springer, 2015) 81–95

    Google Scholar 

  30. F. Zhang, V. Gradinaru, A.R. Adamantidis, R. Durand, R.D. Airan, L. de Lecea, K. Deisseroth, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protocols 5(3), 439–456 (2010)

    Article  Google Scholar 

  31. E. Ferenczi, K. Deisseroth, Illuminating next-generation brain therapies. Nat. Neurosci. 19, 414–416 (2016)

    Google Scholar 

  32. T.N. Lerner, L. Ye, K. Deisseroth, Communication in neural circuits: Tools, opportunities, and challenges. Cell 164, 1136–1165 (2016)

    Google Scholar 

  33. M. Hashimoto, A. Hata, T. Miyata, H. Hirase, Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics, 1(1), article 011002 (2014)

    Google Scholar 

  34. J.M. Cayce, J.D. Wells, J.D. Malphrus, C. Kao, S. Thomsen, N.B. Tulipan, P.E. Konrad, E.D. Jansen, A. Mahadevan-Jansen, Infrared neural stimulation of human spinal nerve roots in vivo. Neurophotonics, 2(1), article 015007 (2015)

    Google Scholar 

  35. C.M. Aasted, M.A. Yücel, R.J. Cooper, J. Dubb, D. Tsuzuki, L. Becerra, M.P. Petkov, D. Borsook, I. Dan, D.A. Boas, Anatomical guidance for functional near-infrared spectroscopy: atlasViewer tutorial. Neurophotonics, 2(2), 020801 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Biophotonics Technology Applications. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_11

Download citation

Publish with us

Policies and ethics