Biophotonics pp 291-321 | Cite as

Optical Imaging Procedures

  • Gerd KeiserEmail author
Part of the Graduate Texts in Physics book series (GTP)


Diverse optical imaging procedures have been developed and applied successfully to biophotonics in research laboratories and clinical settings during the past several decades. Technologies that have contributed to these successes include advances in lasers and photodetectors, miniaturization of optical probes and their associated instrumentation, and development of high-speed signal processing techniques such as advanced computations in image reconstructions, computer vision and computer-aided diagnosis, machine learning, and 3-D visualizations. This chapter expands on the microscopic and spectroscopic technologies described in the previous two chapters by addressing photonics-based imaging procedures such as optical coherence tomography, miniaturized endoscopic processes, laser speckle imaging, optical coherence elastography, photoacoustic tomography, and hyperspectral imaging.


Optical Coherence Tomography Hyperspectral Imaging Speckle Pattern Axial Resolution Thermal Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.R. Kherlopian, T. Song, Q. Duan, M.A. Neimark, M.J. Po, J.K. Gohagan, A.F. Laine, A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74–91 (2008)CrossRefGoogle Scholar
  2. 2.
    A.P. Dhawan, B.D. Alessandro, X. Fu, Optical imaging modalities for biomedical applications. IEEE Rev. Biomed. Eng. 3, 69–92 (2010)CrossRefGoogle Scholar
  3. 3.
    C.T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, S. Andersson-Engels, Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges. Laser Photonics Rev. 7(5), 663–697 (2013)CrossRefGoogle Scholar
  4. 4.
    J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Wojtkowski, High-speed optical coherence tomography: basics and applications. Appl. Opt. 49(16), D30–D61 (2010)CrossRefGoogle Scholar
  6. 6.
    J.A. Izatt, M.A. Choma, Theory of optical coherence tomography, chap. 2, ed. by W. Drexler, J.G. Fujimoto, eds., Optical Coherence Tomography Technology and Applications (Springer, 2008)Google Scholar
  7. 7.
    R.L. Shelton, W. Jung, S.I. Sayegh, D.T. McCormick, J. Kim, S.A. Boppart, Optical coherence tomography for advanced screening in the primary care office. J. Biophotonics 7, 525–533 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, R.A. Leitgeb, Optical coherence tomography today: speed, contrast, and multimodality. J. Biomed. Opt. 19(7), 071412 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Hubler, N.D. Shemonski, R.L. Shelton, G.L. Monroy, R.M. Nolan, S.A. Boppart, Real time automated thickness measurement of the in vivo human TM using optical coherence tomography. Quant. Imaging Med. Surg. 5(1), 69–77 (2015)Google Scholar
  10. 10.
    M.E. Brezinski, Optical Coherence Tomography: Principles and Applications, 2nd edn. (Academic, New York, 2016)Google Scholar
  11. 11.
    J. Mo, M. de Groot, J.F. de Boer, Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth. Opt. Express 23(4), 4935–4945 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhao, H. Tu, Y. Liu, A.J. Bower, S.A. Boppart, Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier. J. Biophotonics 8(6), 512–521 (2015)CrossRefGoogle Scholar
  14. 14.
    I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, A.E. Cable, High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. Opt. Lett. 38, 673–675 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    W.J. Choi, R.K. Wang, “Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo. J. Biomed. Opt., 20, article 106004 (Oct 2015)Google Scholar
  16. 16.
    R. Kiesslich, M. Goetz, A. Hoffman, P.R. Galle, Review paper: new imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 8, 547–553 (2011)CrossRefGoogle Scholar
  17. 17.
    S.F. Elahi, T.D. Wang, Future and advances in endoscopy. J. Biophotonics 4(7–8), 471–481 (2011)CrossRefGoogle Scholar
  18. 18.
    P.S. Thong, S.S. Tandjung, M.M. Movania, W.M. Chiew, M. Olivo, R. Bhuvaneswari, H.S. Seah, F. Lin, K. Qian, K.C. Soo, Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing. J. Biomed. Opt. 17(5), article 0560 (May 2012)Google Scholar
  19. 19.
    V. Subramanian, K. Ragunath, Advanced endoscopic imaging: a review of commercially available technologies. Clin. Gastroenterol. Hepatol. 12, 368–376 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Gu, H. Bao, H. Kang, Fibre-optical microendoscopy. J. Microsc., 254(1), 13–18 (Apr 2014)Google Scholar
  21. 21.
    G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Optics, 19, art. 080902 (Aug 2014)Google Scholar
  22. 22.
    F. Lucà, L. van Garsse, C.M. Rao, O. Parise, M. La Meir, C. Puntrello, G. Rubino, R. Carella, R. Lorusso, G.F. Gensini, J.G. Maessen, S. Gelsomino, Minimally invasive mitral valve surgery: a systematic review. Minim. Invasive Surg., 2013, Article ID 179569 (Mar 2013)Google Scholar
  23. 23.
    T. Blinman, T. Ponsky, Pediatric minimally invasive surgery: laparoscopy and thoracoscopy in infants and children. Pediatrics 130(3), 539–549 (Sept 2012) (Review article)Google Scholar
  24. 24.
    F.M. Phillips, I. Lieberman, D. Polly (eds.), Minimally Invasive Spine Surgery (Springer, New York, 2014)Google Scholar
  25. 25.
    P. Banczerowski, G. Czigléczki, Z. Papp, R. Veres, H.Z. Rappaport, J. Vajda, Minimally invasive spine surgery: systematic review. Neurosurg. Rev. 38, 11–36 (2015)CrossRefGoogle Scholar
  26. 26.
    M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013)CrossRefGoogle Scholar
  27. 27.
    G.J. Ughi, M.J. Gora, A.-F. Swager, A. Soomro, C. Grant, A. Tiernan, M. Rosenberg, J.S. Sauk, N.S. Nishioka, G.J. Tearney, Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed. Opt. Express 7(2), 409–419 (2016)CrossRefGoogle Scholar
  28. 28.
    D.K. Iakovidis, A. Koulaouzidis, Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (Feb 2015). (Review article)Google Scholar
  29. 29.
    J.W. Goodman, Speckle Phenomena in Optics (Roberts and Company, Englewood, Colorado, 2007)Google Scholar
  30. 30.
    D.A. Boas, A.K. Dunn, “Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt., 15(1), article 011109 (Jan/Feb 2010)Google Scholar
  31. 31.
    D. Briers, D.D. Duncan, E. Hirst, S.J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O.B. Thompson, Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18(6), article 066018 (June 2013)Google Scholar
  32. 32.
    A. Curatolo, B.F. Kennedy, D.D. Sampson, T.R. Hillman, Speckle in optical coherence tomography”, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by V.V. Tuchin, R.K. Wang (Taylor & Francis, London, 2013) Chapter 6, pp. 212–277Google Scholar
  33. 33.
    J.C. Ramirez-San-Juan, E. Mendez- Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, B. Choi, Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics. Biomed. Opt. Express, 4(10), 1883–1889 (Oct 2013)Google Scholar
  34. 34.
    S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, A. Bilenca, In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection. Biomed. Opt. Express 7(1), 225–237 (2016)CrossRefGoogle Scholar
  35. 35.
    S.L. Jacques, S.J. Kirkpatrick, Acoustically modulated speckle imaging of biological tissues. Opt. Lett. 23(11), 879–881 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Exp. 3(6), 199–211 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    X. Liang, V. Crecea, S.A. Boppart, Dynamic optical coherence elastography: a review. J. Innov. Opt. Health Sci. 3(4), 221–233 (2010)CrossRefGoogle Scholar
  38. 38.
    C. Sun, B. Standish, V.X.D. Yang, Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16 article 043001 (Apr 2011)Google Scholar
  39. 39.
    K.J. Parker, M.M. Doyley, D.J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56(1), R1–R29 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    B.F. Kennedy, K.M. Kennedy, D.D. Sampson, A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J. Sel. Top. Quantum Electron., 20(2), article 7101217 (Mar/Apr 2014)Google Scholar
  41. 41.
    L. Chin, A. Curatolo, B.F. Kennedy, B.J. Doyle, P.R.T. Munro, R.A. McLaughlin, D.D. Sampson, Analysis of image formation in optical coherence elastography using a multiphysics approach. Biomed. Opt. Express 5, 2913–2930 (2014)CrossRefGoogle Scholar
  42. 42.
    L.V. Wang, H.I. Wu, in Biomedical optics: principles and imaging, chap. 12, in Photoacoustic Tomography (Wiley, Hoboken, NJ, 2007)Google Scholar
  43. 43.
    L.V. Wang, S. Wu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (March 23, 2012)Google Scholar
  44. 44.
    Y. Zhou, J. Yao, L.V. Wang, Tutorial on photoacoustic tomography. J. Biomed. Opt. 21(6), 061007 (June 2016)Google Scholar
  45. 45.
    B. Zabihian, J. Weingast, M. Liu, E. Zhang, P. Beard, H. Pehamberger, W. Drexler, B. Hermann, In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express 9(9), 3163–3178 (2015)CrossRefGoogle Scholar
  46. 46.
    D. Wang, Y. Wu, J. Xia, Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics 3(1), art. 010901 (Jan-Mar 2016)Google Scholar
  47. 47.
    R.X. Xu, D.W. Allen, J. Huang, S. Gnyawali, J. Melvin, H. Elgharably, G. Gordillo, K. Huang, V. Bergdall, M. Litorja, J.P. Rice, J. Hwang, C.K. Sen, Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds. Biomed. Opt. Express 3(6), 1433–1445 (1 June 2012)Google Scholar
  48. 48.
    G. Lu, B. Fei, Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), article 010901 (Jan 2014)Google Scholar
  49. 49.
    J.M. Amigo, H. Babamoradi, S. Elcoroaristizabal, Hyperspectral image analysis: a tutorial. Anal. Chim. Acta 86, 34–51 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringBoston UniversityNewtonUSA

Personalised recommendations