Skip to main content

Optical Imaging Procedures

  • Chapter
  • First Online:
Biophotonics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3747 Accesses

Abstract

Diverse optical imaging procedures have been developed and applied successfully to biophotonics in research laboratories and clinical settings during the past several decades. Technologies that have contributed to these successes include advances in lasers and photodetectors, miniaturization of optical probes and their associated instrumentation, and development of high-speed signal processing techniques such as advanced computations in image reconstructions, computer vision and computer-aided diagnosis, machine learning, and 3-D visualizations. This chapter expands on the microscopic and spectroscopic technologies described in the previous two chapters by addressing photonics-based imaging procedures such as optical coherence tomography, miniaturized endoscopic processes, laser speckle imaging, optical coherence elastography, photoacoustic tomography, and hyperspectral imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. Kherlopian, T. Song, Q. Duan, M.A. Neimark, M.J. Po, J.K. Gohagan, A.F. Laine, A review of imaging techniques for systems biology. BMC Syst. Biol. 2, 74–91 (2008)

    Article  Google Scholar 

  2. A.P. Dhawan, B.D. Alessandro, X. Fu, Optical imaging modalities for biomedical applications. IEEE Rev. Biomed. Eng. 3, 69–92 (2010)

    Article  Google Scholar 

  3. C.T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, S. Andersson-Engels, Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges. Laser Photonics Rev. 7(5), 663–697 (2013)

    Article  Google Scholar 

  4. J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21, 1361–1367 (2003)

    Article  Google Scholar 

  5. M. Wojtkowski, High-speed optical coherence tomography: basics and applications. Appl. Opt. 49(16), D30–D61 (2010)

    Article  Google Scholar 

  6. J.A. Izatt, M.A. Choma, Theory of optical coherence tomography, chap. 2, ed. by W. Drexler, J.G. Fujimoto, eds., Optical Coherence Tomography Technology and Applications (Springer, 2008)

    Google Scholar 

  7. R.L. Shelton, W. Jung, S.I. Sayegh, D.T. McCormick, J. Kim, S.A. Boppart, Optical coherence tomography for advanced screening in the primary care office. J. Biophotonics 7, 525–533 (2014)

    Article  Google Scholar 

  8. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, R.A. Leitgeb, Optical coherence tomography today: speed, contrast, and multimodality. J. Biomed. Opt. 19(7), 071412 (2014)

    Article  ADS  Google Scholar 

  9. Z. Hubler, N.D. Shemonski, R.L. Shelton, G.L. Monroy, R.M. Nolan, S.A. Boppart, Real time automated thickness measurement of the in vivo human TM using optical coherence tomography. Quant. Imaging Med. Surg. 5(1), 69–77 (2015)

    Google Scholar 

  10. M.E. Brezinski, Optical Coherence Tomography: Principles and Applications, 2nd edn. (Academic, New York, 2016)

    Google Scholar 

  11. J. Mo, M. de Groot, J.F. de Boer, Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth. Opt. Express 23(4), 4935–4945 (2015)

    Article  ADS  Google Scholar 

  12. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Article  ADS  Google Scholar 

  13. Y. Zhao, H. Tu, Y. Liu, A.J. Bower, S.A. Boppart, Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier. J. Biophotonics 8(6), 512–521 (2015)

    Article  Google Scholar 

  14. I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, A.E. Cable, High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. Opt. Lett. 38, 673–675 (2013)

    Article  ADS  Google Scholar 

  15. W.J. Choi, R.K. Wang, “Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo. J. Biomed. Opt., 20, article 106004 (Oct 2015)

    Google Scholar 

  16. R. Kiesslich, M. Goetz, A. Hoffman, P.R. Galle, Review paper: new imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 8, 547–553 (2011)

    Article  Google Scholar 

  17. S.F. Elahi, T.D. Wang, Future and advances in endoscopy. J. Biophotonics 4(7–8), 471–481 (2011)

    Article  Google Scholar 

  18. P.S. Thong, S.S. Tandjung, M.M. Movania, W.M. Chiew, M. Olivo, R. Bhuvaneswari, H.S. Seah, F. Lin, K. Qian, K.C. Soo, Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing. J. Biomed. Opt. 17(5), article 0560 (May 2012)

    Google Scholar 

  19. V. Subramanian, K. Ragunath, Advanced endoscopic imaging: a review of commercially available technologies. Clin. Gastroenterol. Hepatol. 12, 368–376 (2014)

    Article  Google Scholar 

  20. M. Gu, H. Bao, H. Kang, Fibre-optical microendoscopy. J. Microsc., 254(1), 13–18 (Apr 2014)

    Google Scholar 

  21. G. Keiser, F. Xiong, Y. Cui, P.P. Shum, Review of diverse optical fibers used in biomedical research and clinical practice. J. Biomed. Optics, 19, art. 080902 (Aug 2014)

    Google Scholar 

  22. F. Lucà, L. van Garsse, C.M. Rao, O. Parise, M. La Meir, C. Puntrello, G. Rubino, R. Carella, R. Lorusso, G.F. Gensini, J.G. Maessen, S. Gelsomino, Minimally invasive mitral valve surgery: a systematic review. Minim. Invasive Surg., 2013, Article ID 179569 (Mar 2013)

    Google Scholar 

  23. T. Blinman, T. Ponsky, Pediatric minimally invasive surgery: laparoscopy and thoracoscopy in infants and children. Pediatrics 130(3), 539–549 (Sept 2012) (Review article)

    Google Scholar 

  24. F.M. Phillips, I. Lieberman, D. Polly (eds.), Minimally Invasive Spine Surgery (Springer, New York, 2014)

    Google Scholar 

  25. P. Banczerowski, G. Czigléczki, Z. Papp, R. Veres, H.Z. Rappaport, J. Vajda, Minimally invasive spine surgery: systematic review. Neurosurg. Rev. 38, 11–36 (2015)

    Article  Google Scholar 

  26. M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013)

    Article  Google Scholar 

  27. G.J. Ughi, M.J. Gora, A.-F. Swager, A. Soomro, C. Grant, A. Tiernan, M. Rosenberg, J.S. Sauk, N.S. Nishioka, G.J. Tearney, Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed. Opt. Express 7(2), 409–419 (2016)

    Article  Google Scholar 

  28. D.K. Iakovidis, A. Koulaouzidis, Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (Feb 2015). (Review article)

    Google Scholar 

  29. J.W. Goodman, Speckle Phenomena in Optics (Roberts and Company, Englewood, Colorado, 2007)

    Google Scholar 

  30. D.A. Boas, A.K. Dunn, “Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt., 15(1), article 011109 (Jan/Feb 2010)

    Google Scholar 

  31. D. Briers, D.D. Duncan, E. Hirst, S.J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O.B. Thompson, Laser speckle contrast imaging: theoretical and practical limitations. J. Biomed. Opt. 18(6), article 066018 (June 2013)

    Google Scholar 

  32. A. Curatolo, B.F. Kennedy, D.D. Sampson, T.R. Hillman, Speckle in optical coherence tomography”, in Advanced Biophotonics: Tissue Optical Sectioning, ed. by V.V. Tuchin, R.K. Wang (Taylor & Francis, London, 2013) Chapter 6, pp. 212–277

    Google Scholar 

  33. J.C. Ramirez-San-Juan, E. Mendez- Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, B. Choi, Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics. Biomed. Opt. Express, 4(10), 1883–1889 (Oct 2013)

    Google Scholar 

  34. S. Ragol, I. Remer, Y. Shoham, S. Hazan, U. Willenz, I. Sinelnikov, V. Dronov, L. Rosenberg, A. Bilenca, In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection. Biomed. Opt. Express 7(1), 225–237 (2016)

    Article  Google Scholar 

  35. S.L. Jacques, S.J. Kirkpatrick, Acoustically modulated speckle imaging of biological tissues. Opt. Lett. 23(11), 879–881 (1998)

    Article  ADS  Google Scholar 

  36. J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Exp. 3(6), 199–211 (1998)

    Article  ADS  Google Scholar 

  37. X. Liang, V. Crecea, S.A. Boppart, Dynamic optical coherence elastography: a review. J. Innov. Opt. Health Sci. 3(4), 221–233 (2010)

    Article  Google Scholar 

  38. C. Sun, B. Standish, V.X.D. Yang, Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16 article 043001 (Apr 2011)

    Google Scholar 

  39. K.J. Parker, M.M. Doyley, D.J. Rubens, Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56(1), R1–R29 (2011)

    Article  ADS  Google Scholar 

  40. B.F. Kennedy, K.M. Kennedy, D.D. Sampson, A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J. Sel. Top. Quantum Electron., 20(2), article 7101217 (Mar/Apr 2014)

    Google Scholar 

  41. L. Chin, A. Curatolo, B.F. Kennedy, B.J. Doyle, P.R.T. Munro, R.A. McLaughlin, D.D. Sampson, Analysis of image formation in optical coherence elastography using a multiphysics approach. Biomed. Opt. Express 5, 2913–2930 (2014)

    Article  Google Scholar 

  42. L.V. Wang, H.I. Wu, in Biomedical optics: principles and imaging, chap. 12, in Photoacoustic Tomography (Wiley, Hoboken, NJ, 2007)

    Google Scholar 

  43. L.V. Wang, S. Wu, Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (March 23, 2012)

    Google Scholar 

  44. Y. Zhou, J. Yao, L.V. Wang, Tutorial on photoacoustic tomography. J. Biomed. Opt. 21(6), 061007 (June 2016)

    Google Scholar 

  45. B. Zabihian, J. Weingast, M. Liu, E. Zhang, P. Beard, H. Pehamberger, W. Drexler, B. Hermann, In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express 9(9), 3163–3178 (2015)

    Article  Google Scholar 

  46. D. Wang, Y. Wu, J. Xia, Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics 3(1), art. 010901 (Jan-Mar 2016)

    Google Scholar 

  47. R.X. Xu, D.W. Allen, J. Huang, S. Gnyawali, J. Melvin, H. Elgharably, G. Gordillo, K. Huang, V. Bergdall, M. Litorja, J.P. Rice, J. Hwang, C.K. Sen, Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds. Biomed. Opt. Express 3(6), 1433–1445 (1 June 2012)

    Google Scholar 

  48. G. Lu, B. Fei, Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), article 010901 (Jan 2014)

    Google Scholar 

  49. J.M. Amigo, H. Babamoradi, S. Elcoroaristizabal, Hyperspectral image analysis: a tutorial. Anal. Chim. Acta 86, 34–51 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Keiser .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Keiser, G. (2016). Optical Imaging Procedures. In: Biophotonics. Graduate Texts in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-10-0945-7_10

Download citation

Publish with us

Policies and ethics