Skip to main content

Performance Analysis of Real-Time BDS Clock Estimation with Different Orbit Accuracy

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 388))

  • 1701 Accesses

Abstract

Based on un-differenced model of clock estimation, the mathematic model of real-time clock estimation influenced by orbit error is derived, and then the estimation accuracy of BDS real-time clock and real-time positioning accuracy are analyzed. The results show that real-time BDS clock accuracy achieves 0.30 ns using the rapid orbit product and the corresponding 2-D and 3-D real-time positioning accuracy are 0.36 and 0.48 m, respectively. With 0.1 and 0.2 m orbit error influenced, the decreased accuracy of real-time clock estimation is 0.05 and 0.14 ns, and the decreased positioning accuracy is 0.057 and 0.154 m, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zumberge JF, Heflin MB, Jefferson DC et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

  2. Mohamed E, Salim A (2015) Performance of real-time precise point positioning using IGS real-time service. GPS Solut. First online: 09 June 2015. doi:10.1007/s10291-015-0467-z

    Google Scholar 

  3. Hadas T, Bosy J. IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19(1):93–105. doi:10.1007/s10291-014-0369-5

    Google Scholar 

  4. Ge MR, Chen JP, Douša J, Gendt G, Wickert J (2012) A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solut 16(1):9–17. doi:10.1007/s10291-011-0206-z

    Google Scholar 

  5. Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geodesy 83(11):1083–1094. doi:10.1007/s00190-009-0326-1

    Google Scholar 

  6. Zhang XH, Li XX, Guo F (2011) Satellite clock estimation at 1 HZ for realtime kinematic PPP applications. GPS Solut 15(4):315–324. doi:10.1007/s10291-010-191-7

  7. Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near realtime positioning. GPS Solut 13(3):173–182. doi:10.1007/s10291-008-0110-3

    Google Scholar 

  8. Lou Y, Shi C, Shou X, Ye S (2009) Realization and analysis of GPS precise clock products. Geomatics Inf Sci Wuhan Univ 34(1):88–91

    Google Scholar 

  9. Li X, Xu Y, Wang L (2010) Undifferenced precise satellite clock error estimation and precision analysis. Geomatics Inf Sci Wuhan Univ 35(6):661–664

    Google Scholar 

  10. Li L, Zhu J, Chen Y, Kuang C et al (2011) Convergent analysis of real-time estimation of satellite clock bias. J Geodesy Geodyn 31(4):80–84

    Google Scholar 

  11. Li H, Wang J, Wang H, Li B (2010) Precise clock error estimation of GPS satellite and analysis based on GNSS network. Geomatics Inf Sci Wuhan Univ 35(8):P1001–P1003

    Google Scholar 

  12. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

    Article  Google Scholar 

  13. Liu N, Xiong Y, Xu S (2011) Detection and repair of cycle slips using improved turboedit algorithm and Chebyshev polynomial method. Geomatics Inf Sci Wuhan Univ 36(12):1500–1503

    Google Scholar 

  14. Yang YX, He HB, Xu GC (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geodesy 75(2–3):109–116. doi:10.1007/s001900000157

    Google Scholar 

Download references

Acknowledgements

Thanks for MGEX provided BDS observation data and GFZ provided rapid orbit and clock product, this work was supported partly by the Program of the National Natural Science Foundation of China (41104019, 41104022, 41304033 and 41504006), and the Grand Projects of the Beidou-2 System (GFZX0301040308), the Special Fund for Basic Scientific Research of Central Colleges (Grant No. 2014G1261051 and 310826165014, Chang’an University), Chinese Academy of Sciences (CAS) programs of “Pioneer Hundred Talents”, “Light of West China” and “Youth Innovation Promotion Association”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Fu, W., Zhang, Q., Huang, G., Li, P., Cui, B., Tu, R. (2016). Performance Analysis of Real-Time BDS Clock Estimation with Different Orbit Accuracy. In: Sun, J., Liu, J., Fan, S., Wang, F. (eds) China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I. Lecture Notes in Electrical Engineering, vol 388. Springer, Singapore. https://doi.org/10.1007/978-981-10-0934-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0934-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0933-4

  • Online ISBN: 978-981-10-0934-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics