Advertisement

Tridimensional (3D) Optical Storage

  • Duanyi Xu
Chapter

Abstract

The mechanism of tridimensional (3D) digital data storage, especially for multilayer optical disc, seeking method and principles of data parallel reading/writing, as well as method of multidimensional codes are important proportion in 3D optical storage, that will be described in this chapter. In fact, a various principles of reading/writing and materials can be used to 3D multilayer optical storage, as above introduced photochromism for example, in which photochromic compounds and polymers are provided with good photochromic and photorefractive properties for digital 3D-optical storage

Keywords

Turbo Code Cyclic Code Spherical Aberration Product Code Extrinsic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q. Shen, D. Xu, Analysis of the effects of disk tilt on the differential-phase-detection signal in a high-density DVD read-only disk driver. Appl. Optic. 45(17), 3998–4004 (2006)Google Scholar
  2. 2.
    J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, T. Erneux, Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Phys. Rev. Lett. 107, 104101 (2011)Google Scholar
  3. 3.
    H. Hu, D. Xu, L. Pan, Modulation code and PRML detection for multi-level run-length-limited DVD channels. In 2006 Optical Data Storage Topical Meeting, pp 112–114, 2006Google Scholar
  4. 4.
    E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos et al., Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    D. Xu, J. Liu, H. Wang et al., Multilevel read-only optical disk and method for producing the same, Patent No. US 7,680,024 B2, 2010Google Scholar
  6. 6.
    S. Aoki, M. Yamada, T. Yamagami, Development of deformable mirror for spherical aberration compensation. Proc. SPIE Optic. Data Storage 750513–6 (2009)Google Scholar
  7. 7.
    S. Aoki, M. Yamada, T. Yamagini, A novel deformable mirror for spherical aberration compensation. Jpn. J. Appl. Phys. 48, 03A003 (2009)Google Scholar
  8. 8.
    S.J. Lukes, D.L. Dickensheets, SU-8 focus control mirrors released by XeF2 dry etch. In Proceedings of SPIEMOEMS and Miniaturized Systems X, 793006-6, 2011Google Scholar
  9. 9.
    S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777 (2000)CrossRefGoogle Scholar
  10. 10.
    D. Yan, M. Wei, Photofunctional Layered Materials. Springer Copyright. ISSN 0081-5993 (Springer, Cham, 2015)Google Scholar
  11. 11.
    C.E. Olson, Three-dimensional fluorescent optical data storage in molecular glasses and highly crosslinked polymers, S.l. Boston College, 2003Google Scholar
  12. 12.
    S.J. Lukes, Surface micro-machined SU-8 2002 deformable membrane mirrors, M.S. Thesis, Department of Electrical Engineering, Montana State University, Bozeman, MT, 2011Google Scholar
  13. 13.
    Inphase Technologies, Inc. (Longmont, CO, US) and Nintendo Co., Ltd. (Kyoto, JP) Miniature Flexure Based Scanners For Angle Multiplexing Patent, 2008Google Scholar
  14. 14.
    Zhou et al., Waveguide self-coupling based reconfigurable resonance structure for optical filtering and delay. Opt. Exp. 19, 8032 (2011)Google Scholar
  15. 15.
    D. Xu, N. Yi, L. Pan, K. Chen, J. Xiong, D. Lu, H. Wu, J. Ma, J. Pei, Multi-level read-only master disk, Tsinghua University, CN200610167683.5 (2007)Google Scholar
  16. 16.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature(London) 466, 730 (2010)Google Scholar
  17. 17.
    P. Tamarat, N.B. Manson, J.P. Harrison, R.L. McMurtrie, A. Nizovtsev, C. Santori, R.G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, J. Wrachtrup, New J. Phys. 10, 045004 (2008)Google Scholar
  18. 18.
    A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Phys. Rev. A 76, 033804 (2007)Google Scholar
  19. 19.
    D.E. Pansatiankul, A.A. Sawchuk, Multidimensional modulation codes and error correction for page-oriented optical data storage. SPIE 4342, 393 (2002)Google Scholar
  20. 20.
    J. Cai, W. Huang, Two-photon three-dimensional optical storage of a new pyrimidine photobleaching material. Optik-Int. J. Light Electron Optic. 126(3), 343–346 (2015)CrossRefGoogle Scholar
  21. 21.
    K. Heshami, A. Green, Y. Han, A. Rispe, E. Saglamyurek, N. Sinclair, W. Tittel, C. Simon, Phys. Rev. A 86, 013813 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, J.M. Baker, Phys. Rev. B 79, 075203 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    G. Heinze, A. Rudolf, F. Beil, T. Halfmann, Phys. Rev. A 81, 011401(R) (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Li, H. Zhang, J. Shao, J. Appl. Optic. 30(3), 442–447 (2009)Google Scholar
  25. 25.
    H. Yuan, D. Xu, Q. Zhang, J. Song, Dynamic model of mastering for multilevel run-length limited read-only disc. Optic. Express 15(7), 4176–4181 (2007)Google Scholar
  26. 26.
    H. Yuan, D. Xu, H. Xu, J. Pei, Timing recovery method for multilevel run-length-limited read only disc. Jpn. J. Appl. Phys. 46(9A), 5845–5848 (2007)Google Scholar
  27. 27.
    H. Yuan, H. Xu, L. Pan, D. Xu, Read channel for multilevel run-length-limited read-only disc. Jpn. J. Appl. Phys. 47(7), 5859–5862 (2008)Google Scholar
  28. 28.
    H. Hu, H. Yuan, Y. Tang, L. Pan, New rate 6/9 run-length limited (2, 11) code with spaced pits/lands constraint for four-level read-only optical disc. Jpn. J .Appl. Phys. 47(7), 5867–5869 (2008)Google Scholar
  29. 29.
    Y. Ni, W. Xiang, H. Yuan, L. Pan, C. Su, H. Wang, Improved mastering material for multilevel blue laser disc. Optic. Express 15(20), 13244 (2007)Google Scholar
  30. 30.
    J. Pei, H. Hu, L. Pan, Q. Shen, H. Hu, D. Xu, Constrained code and partial-response maximum-likelihood detection for high density multi-level optical recording channels. Jpn. J. Appl. Phys. 46(6B), 3771–3774 (2007)Google Scholar
  31. 31.
    E.P. Walker, J. Duparre, H. Zhang, W. Feng, Y. Zhang, A.S. Dvornikov, Spherical aberration correction for 2-photon recorded monolithic muiltilayer optical data storage, ODS 2001 Proc. SPIE. (2001)Google Scholar
  32. 32.
    H. Heng, X. Duanyi, 3-ary (2,10) run-length limited code for optical storage channels. Elec. Lett. 41(17), 972–973 (2005)CrossRefGoogle Scholar
  33. 33.
    E.D. Walker, W. Feng, Y. Zhang, H. Zhang, F. McCormick, S. Esener, 3-D parallel readout in a 3-D multilayer optical data storage system, ISOM/ODS meeting paper # TuB 4 (2002)Google Scholar
  34. 34.
    H. Hua, L. Pan, J. Xiong, Y. Ni, New efficient run-length limited code for multilevel read-only optical disc. Jpn. J. Appl. Phys. 46(6B), 3782–3786 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J. Song, D.Y. Xu, G.S. Qi, H. Hu, Q.C. Zhang, J.P. Xiong, Multilevel read-only optical recording methods. Chin. Phys. 15, 1788 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Tang, J. Pei, L.F. Pan, Y. Ni, H. Hu, B.Q. Zhang, Experiments of multi-level read-only recording using readout signal wave-shape modulation. Chin. Phys. Lett. 5(25), 1709 (2008)Google Scholar
  37. 37.
    W. Jia, Y. Luo, Yu. Jian, B. Liu, Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA). Opt. Express 23(21), 26932–26939 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Tang, J. Pei, Y. Ni, L.F. Pan, H. Hu, B.Q. Zhang, Multi-level read-only recording using signal waveform modulation. Opt. Express 16, 6156–6162 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Q.H. Shen, J. Pei, H.Z. Xu, L. Wang, D.Y. Xu, Multi-level read-only recording using signal waveform modulation. Jpn. J. Appl. Phys. 45, 5764 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Q-H. Shen, J. Pei, D-Y. Xu, J-S. Ma, Analysis of the focus error characteristic in high density optical disk drive. Acta Physica Sinica 55(8), 4132–4138 (2006)Google Scholar
  41. 41.
    G.A. Kaddoum, High data rate and energy efficient communication system. IEEE Commun. Lett. 19(2), 175–178 (2015)Google Scholar

Copyright information

© Tsinghua University Press and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations