Skip to main content

Applications of Select Nanomaterials

  • Chapter
  • First Online:
  • 1036 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

Abstract

The diagnostic and therapeutic applications of nanomaterials are numerous. This chapter presents select examples of the biomedical applications of the following nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Koshki KN, As RP (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247. doi:10.1186/1556-276X-9-247

    Article  Google Scholar 

  • Akbarzadeh A, Sadabady RR, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Koshki KN (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102–109. doi:10.1186/1556-276X-8-102

    Article  Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490. doi:10.1016/j.addr.2007.04.007

    Article  Google Scholar 

  • Beijnum VJR, Dings RP, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH, Griffioen AW (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108(7):2339–2348

    Article  Google Scholar 

  • Bradshaw MD, Knecht MR, Crooks RM (2005) Synthesis, characterization, and magnetism of dendrimer encapsulated co nanoparticles. www.dtic.mil/cgibin/GetTRDoc?AD=ADA516324

  • Cai S, Zhang Q, Bagby T, Forrest ML (2011) Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 63:901–908. doi:10.1016/j.addr.2011.05.017

    Article  Google Scholar 

  • Caltagirone C, Falchi AM, Lampis S, Lippolis V, Meli V, Monduzzi M, Prodi L, Schmidt J, Sgarzi M, Talmon Y, Bizzarri R, Murgia S (2014) Cancer-cell-targeted theranostic cubosomes. Langmuir 30:6228–6236. doi:10.1021/la501332u

    Article  Google Scholar 

  • Cheng Y (2012) Dendrimer-based drug delivery systems from theory to practice. Wiley, New York

    Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical Diagnostics. Curr Opin Chem Biol 10:11–19. doi:10.1016/j.cbpa.2006.01.006

    Article  Google Scholar 

  • Coune A (1988) Liposomes as drug delivery system in the treatment of infectious diseases potential applications and clinical experience. Infection 16:141–147. doi:10.1007/BF01644088

    Article  Google Scholar 

  • Devasena T, Ashok V, Dey N, Francis AP (2014) Phytosynthesis of magnesium nanoparticles using lichens. World J Pharm Res 3(3):4625–4632

    Google Scholar 

  • Firer MA, Gellerman G (2012) Targeted drug delivery for cancer therapy: the other side of antibodies. J Hematol Oncol 5(70):1–16. doi:10.1186/1756-8722-5-70

  • Freitas RA Jr (1998) Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol 26:411–430. doi:10.3109/10731199809117682

    Article  Google Scholar 

  • Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25. doi:10.1166/jctn.2005.01

    Google Scholar 

  • Freitas Jr RA (1998) Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotech 26:411–430. http://www.zdnet.com/article/nanotechnology-to-end-insulin-injections-for-diabetics/

  • Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224. doi:10.1021/nl061498r

    Article  Google Scholar 

  • Friden PM, Walus LR, Musso GF, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci 88:4771–4775

    Google Scholar 

  • Garud A, Singh D, Garud N (2012) Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int Curr Pharm J 1:384–393. doi:10.3329/icpj.v1i11.12065

    Article  Google Scholar 

  • Gregoriadis G, McCormack B, Obrenovich M, Perrie Y (2000) Entrapment of plasmid DNA vaccines into liposomes by dehydration/rehydration. Methods Mol Med 29:305–311. doi:10.1385/1-59259-688-6:305

    Google Scholar 

  • Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, Gan L (2010) Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and highbioavailability. Acta Pharmacol Sin 31:990–998. doi:10.1038/aps.2010.98

    Article  Google Scholar 

  • Hyodo K, Yamamoto E, Suzuki T, Kikuchi H, Asano M, Ishihara H (2013) Development of liposomal anticancer drugs. Biol Pharm Bull 36:703–707. doi:10.1248/bpb.b12-0110

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Actabiochmicapolonica 48:199

    Google Scholar 

  • Kumar PSM, Francis AP, Devasena T (2014) Biosynthesized and chemically synthesized titaniananoparticles: comparative analysis of antibacterial activity. J Environ Nanotechnol 3(3):73–81. doi:10.13074/jent.2014.09.143098

    Article  Google Scholar 

  • Lazar AN, Mourtas S, Youssef I, Parizot C, Dauphin A, Delatour B, Antimisiaris SG, and Duyckaerts C (2012) Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine. 9:712–721. doi:http://dx.doi.org/10.1016/j.nano.2012.11.004

  • Lee JW, Park JH, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29(13):2113–2124. doi:10.1016/j.biomaterials.2007.12.048

  • Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12(3):354–360. doi:10.1038/nm1368

    Article  Google Scholar 

  • Maillefer D, van Lintel H, Rey-Mermet G, Hirschi R (1999) A high-performance silicon micropump for an implantable drug delivery system. Proceedings of the 12th IEEE MEMS 1999 Technical Digest, Orlando, FL, USA, 17–21 Jan 1999, pp 541–546

    Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006). PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Google Scholar 

  • Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Kürzinger K, Stefani FD, Feldmann (2009) J Nano Lett Dec 2009, 9(12):4558–4563. doi:10.1021/nl903178n

  • Meng E, Hoang T (2012) Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv 3(12):1457–1467. doi:10.4155/tde.12.132

    Article  Google Scholar 

  • Morel S, Terreno E, Ugazio E, Aime S, Gasco MR (1998) NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes. Eur J Pharm Biopharm 45:157–163. doi:10.1016/S0939-6411(97)00107-0

    Article  Google Scholar 

  • Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG (2014) Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 80:175–183. doi:10.1016/j.ejmech.2014.04.050

    Article  Google Scholar 

  • Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, Kalluri JR, Ray PC (2009). Ultrasensitive and highly selective detection of Alzheimer’s Disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3:2834-2840. doi:10.1021/nn900813b

  • Nisar A, Mahaisavariya B, Tuantranont A (2008).MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130:917–942

    Google Scholar 

  • Paolino D, Cosco D, Gaspari M, Celano M, Wolfram J, Voce P, Puxeddu E, Filetti S, Celia C, Ferrari M, Russo D, Fresta M (2014) Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials 35:7101–7109. doi:10.1016/j.biomaterials.2014.04.088

    Article  Google Scholar 

  • Patidar A, Ds Thakur, Kumar P, Verma J (2010) A review on novel lipid based nanocarriers. Int J Pharm Pharm Sci 2:30–35

    Google Scholar 

  • Ravisankar S, Dey N, Francis AP, Pandian K, Devasena T (2015) Preparation and characterization of gatifloxacin encapsulated chitosan nanoparticles for ocular delivery. Int J Innovative Res Sci Eng Technol 4(1):28–33

    Google Scholar 

  • Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond) 3:761–776. doi:10.2217/17435889.3.6.761

    Article  Google Scholar 

  • Sadhasivam L, Dey N, Francis AP, Devasena T (2015) Transdermal patches of chitosan nanoparticles for insulin delivery. Int J Pharm Pharm Sci 7(5):84–88

    Google Scholar 

  • Sampathkumar SG, Yarema KJ (2007). Dendrimers in cancer treatment and diagnosis. In: Nanotechnologies for life sciences, Wiley-VCH Verlag GmbH & Co. KGaA, Germany. doi:10.1002/9783527610419.ntls0071

  • Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159–182. doi:10.1177/2051013614541440

    Article  Google Scholar 

  • Shanmugam T, Banerjee R (2011) Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2:1485–1516

    Article  Google Scholar 

  • Shriver LP, Koudelka KJ, Manchester M (2009) Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol 211(1–2):66–72. doi:10.1016/j.jneuroim.2009.03.015

    Article  Google Scholar 

  • Soler M, Mesa-Antunez PM, Estevez MC, Ruiz-Sanchez AJ, Otte MA, Sepulveda B, Collado D, Mayorga C, Torres MJ, Perez-Inestrosa E, Lechuga LM (2015) Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens Bioelectron 66:115–123

    Article  Google Scholar 

  • Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA. 103:1215–1220. doi:10.1073/pnas.0509739103

    Article  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine 6(5):634–641. doi:10.1016/j.nano.2010.04.005

    Google Scholar 

  • Suganya TR, Devasena T (2015) Exploring the mechanism of anti-inflammatory activity of phyto-stabilized silver nanorods. Digest J Nanomaterials Biostructures 10(1):277–282

    Google Scholar 

  • Torchilin VP (2006) Nanoprticulates as drug carriers. Imprerial College Press, London (ebook). ISBN 978-1-908979-97-1

    Book  Google Scholar 

  • Wang R, Ruan C, Kanayeva D, Lassiter K, Li Y (2008) TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett 8:2625–2631. doi:10.1021/nl080366q

    Article  Google Scholar 

  • Woias P (2005) Micropumps—past, progress and future prospects. Sens Actuators B Chem 105:28–38

    Article  Google Scholar 

  • Woudenberg BA, Storm G, Woodle MC (1994) Liposomes in the treatment of infections. J Drug Target 2:363–371. doi:10.3109/10611869408996811

    Article  Google Scholar 

  • Yang J, Eom K, Lim EK, Park J, Kang Y, Yoon J, Na S, Koh EK, Suh JS, Huh YM, Kwo TY, Haam S (2008) In situ detection of live cancer cells by using bioprobes based on au nanoparticles. Langmuir 24:12112–12115. doi:10.1021/la802184m

    Article  Google Scholar 

  • Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, Hu Y (2013) Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. Int J Mol Sci 14:19763–19773. doi:10.3390/ijms141019763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Devasena T (2017). Applications of Select Nanomaterials. In: Therapeutic and Diagnostic Nanomaterials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-0923-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0923-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0921-1

  • Online ISBN: 978-981-10-0923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics