Skip to main content

Multifunctional Nanoparticles

  • Chapter
  • First Online:
Book cover Therapeutic and Diagnostic Nanomaterials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANO))

  • 924 Accesses

Abstract

The functionalization of nanoparticles with one or more specific chemical moieties, so-called ligands, results in multifunctional nanoparticles. They are widely used in biomedical applications, especially drug delivery, cancer therapy, diagnostics, tissue engineering, and molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attarwala H (2010) Role of antibodies in cancer targeting. J Nat Sci Biol Med 1:53–56. doi:10.4103/0976-9668.71675

    Article  Google Scholar 

  • Budzynska R, Nevozhay D, Kanska U, Jagiello M, Opolski A, Wietrzyk J, Boratynski J (2007) Antitumor activity of mannanmethotrexate conjugate in vitro and in vivo. Oncol Res 16:415–421. doi:10.3727/000000007783980837

    Google Scholar 

  • Devi RA, Francis AP, Devasena T (2014) Green-synthesized gold nanocubes functionalized with bisdemethoxycurcumin analog as an ideal anticancer candidate. Green Proc Synth 3(1):47–61. doi:10.1515/gps-2013-0090

    Google Scholar 

  • Guo S, Huang L (2011) Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater Article ID 742895:12. doi:http://dx.doi.org/10.1155/2011/742895

  • Gupta A, Gupta RK, Gupta GS (2009) Targeting cells for drug and gene delivery: emerging applications of mannans and mannan binding lectins. J Sci Indus Res 68:465–483

    Google Scholar 

  • Hanenberg M, Mcafoose J, Kulic L, Welt T, Wirth F, Parizek P (2014) Amyloid- peptide-specific DARPins as a novel class of potential therapeutics for alzheimer disease. J Biol Chem 289:27080–27089. doi:10.1074/jbc.M114.564013)

    Article  Google Scholar 

  • Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146. doi:10.1002/jps.20457

    Article  Google Scholar 

  • Jang JY, Lee DY, Park SJ, Byun Y (2003) Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets. Biomaterials 25:3663–3669. doi:10.1016/j.biomaterials.2003.10.062

    Article  Google Scholar 

  • Kaszuba M, Jones MN (1998) The use of lectins for liposome targeting in drug delivery. Methods Mol Med 9:583–594. doi:10.1385/0-89603-396-1:583

    Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. doi:10.1038/nrd3141

    Article  Google Scholar 

  • Lungu M, PogonariuA Precup M, Moldovan L, Oancea A, Zarnescu O (1997) Increasing biocompatibility of synthetic polymers for medical use by compounding with collagen. Roum Biotechnol Lett 2:153–161

    Google Scholar 

  • Muro S (2012) Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release 164:125–137. doi:10.1016/j.jconrel.2012.05.052

    Article  Google Scholar 

  • Osseni SA, Lechevallier S, Verelst M, Perriat P, Dexpert-Ghys J, Neumeyer D, Garcia R, Mayer F, Djanashvili K, Peters JA, Magdeleine E, Gros-Dagnac H, Celsis P, Mauricot P (2014) Adolinium oxysulfide nanoparticles as multimodal imaging agents for T 2-weighted MR, X-ray tomography and photoluminescence. Nanoscale 6:555–564. doi:10.1039/C3NR03982J

    Article  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419. doi:10.1016/S0169-409X(02)00226-0

    Article  Google Scholar 

  • Schaffner P, Dard MM (2003) Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 60:119–132 (1420-682X/03/010119-14)

    Article  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130. doi:10.1007/s00395-008-0710-7

    Article  Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 368:1333–1383. doi:10.1098/rsta.2009.0273

    Article  Google Scholar 

  • Suganya TR, Devasena T (2015) Green synthesis of silver nanorods and optimization of its therapeutic cum toxic dose. J Nanosci Nanotechnol 15(12):9565–9570

    Article  Google Scholar 

  • Svenson S, Prudhomme PK (2012) Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Springer Science and Business Media, New York

    Book  Google Scholar 

  • Thevenot P, Hu W, Tang L (2008) Surface chemistry influence implant biocompatibility. Curr Top Med Chem 8:270–280

    Article  Google Scholar 

  • Wandtke T, Woźniak J, Kopiński P (2015) Aptamers in diagnostics and treatment of viral infections. Viruses 7:751–780. doi:10.3390/v7020751

    Article  Google Scholar 

  • Wu X, Chen J, Wu M, Zhao JX (2015) Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344. doi:10.7150/thno.10257

    Article  Google Scholar 

  • Xu W, Bony BA, Kim CR, Baeck JS, Chang Y, Bae J, Chae KS, Kim TJ, Lee GH (2013) Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. Sci Rep 3:3210. doi:10.1038/srep03210

    Google Scholar 

  • Zavaleta CL, Phillips WT, Soundararajan A, Goins BA (2007) Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model. Int J Pharm 337:316–328. doi:10.1016/j.ijpharm.2007.01.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devasena T .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Devasena T (2017). Multifunctional Nanoparticles. In: Therapeutic and Diagnostic Nanomaterials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-0923-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0923-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0921-1

  • Online ISBN: 978-981-10-0923-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics