Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 386 Accesses

Abstract

This chapter gives an overview of the research objective addressed in the book, the fundamental backgrounds to understand such topics and a rationale of how the book has been organised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein, I.R., Pojman, J.A.: Introduction to Nonlinear Chemical Dynamics: Waves, Patterns and Chaos. Oxford University Press, New York, Oscillations (1998)

    Google Scholar 

  2. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York (1977)

    Google Scholar 

  3. Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132 (1996)

    Article  CAS  Google Scholar 

  4. Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical system. Wiley-Interscience, New York (1985)

    Google Scholar 

  5. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. London, Ser. B 237, 37 (1992)

    Google Scholar 

  6. Kepper, P.D., Kustin, K., Epstein, I.R.: A systematically designed homogeneous oscillating reaction: the arsenite-iodate-chlorite system. J. Am. Chem. Soc. 103, 2133 (1981)

    Article  Google Scholar 

  7. Bartosz, A., Grzybowski, K.M., Bishop, C.J., Campbell, M.F., Stoyan, K.S.: Micro- and nanotechnology via reaction–diffusion. Soft Matter 1, 114 (2005)

    Article  CAS  Google Scholar 

  8. Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. Oxford University Press, New York (1999)

    Google Scholar 

  9. Fukami, K., Nakanishi, S., Yamasaki, H., Tada, T., Sonoda, K., Kamikawa, N., Tsuji, N., Sakaguchi, H., Nakato, Y.: General mechanism for synchronization of electrochemical oscillations and self-organized dendrite Electrodeposition of metals with ordered 2D and 3D microstructures. J. Phys. Chem. C 111, 1150 (2007)

    Google Scholar 

  10. Yoshida, R., Sakai, T., Hara, Y., Maeda, S., Hashimoto, S., Suzuki, D., Murase, Y.: Self-oscillating gel as novel biomimetic materials. J. Cont. Releas. 140, 186 (2009)

    Article  CAS  Google Scholar 

  11. Oaki, Y., Imai, H.: Experimental demonstration for the morphological evolution of crystals grown in gel media. Cryst. Growth Des. 3, 711 (2003)

    Article  CAS  Google Scholar 

  12. Vanag, V.K., Epstein, I.R.: Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol-OT microemulsion. Phys. Rev. Lett. 87, 228301 (2001)

    Article  CAS  Google Scholar 

  13. Rastogi, R.P., Srivastava, R.C.: Interface-mediated oscillatory phenomena. Adv. Colloid Interface Sci. 93, 1 (2001)

    Article  CAS  Google Scholar 

  14. Vanag, V.K., Epstein, I.R.: Dash waves in a reaction-diffusion system. Phys. Rev. Lett. 90, 098301 (2003)

    Article  CAS  Google Scholar 

  15. Jia, L., Yu, S., Qiang, C., Qianyao, S., Hengde, L., Xihua, C., Xiaoping, W., Yunjie, Y., Vrieling, E.G.: Patterning of nanostructured cuprous oxide by surfactant-assisted electrochemical deposition. Cryst. Growth Des. 8, 2652 (2008)

    Article  CAS  Google Scholar 

  16. Atkin, A., Ross, J.: Statistical construction of chemical reaction mechanisms from measured time-series. J. Phys. Chem. 99, 970 (1995)

    Article  Google Scholar 

  17. Rastogi, R.P., Srivastava, R.C.: Casuality principle, non-equilibrium thermodynamics and non-linear science of open systems. J. Sci. Ind. Res. 67, 747 (2008)

    CAS  Google Scholar 

  18. Cross, M.C., Hohenberg, P.C.: Pattern-formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  CAS  Google Scholar 

  19. Bray, W.C.: A periodic reaction in homogeneous solution and its relation to catalysis. J. Am. Chem. Soc. 43, 1262 (1921)

    Article  CAS  Google Scholar 

  20. Bray, W.C., Liebhafsky, H.A.: Reactions involving hydrogen peroxide, iodine and iodate ion. I. Introduction. J. Phys. Chem. 53, 38 (1931)

    CAS  Google Scholar 

  21. Shaw, D.M., Pritchard, M.O.: The existence of homogeneous oscillating reactions. J. Phys. Chem. 72, 1403 (1968)

    Article  CAS  Google Scholar 

  22. Weiser, H.B., Garrison, A.: The oxidation and luminescence of phosphorus. J. Phys. Chem. 25, 61 (1921)

    Article  Google Scholar 

  23. Rayleigh, L.: A study of the glow of phosphorus. Periodic luminosity and action of inhibiting substances. Proc. Roy. Soc. Ser. A 99, 372 (1921)

    Google Scholar 

  24. Douglas, J.M., Rippon, D.T.: Unsteady state process operation. Chem. Eng. Sci. 21, 305 (1966)

    Article  CAS  Google Scholar 

  25. Nicolis, G., Portnow, J.: Chemical oscillations. Chem. Rev. 73, 365 (1973)

    Article  CAS  Google Scholar 

  26. Bush, S.F.: Vapor phase reaction of methyl chloride. Proc. Roy. Soc. Ser. A 309, 1 (1964)

    Article  Google Scholar 

  27. Das, I., Mishra, S.S.: Fractal growth and oscillation during electrochemical deposition in Pb-Zn binary system. Indian J. Chem. Sect. A 39, 1005 (2000)

    Google Scholar 

  28. Suter, L.M., Wong, P.: Nonlinear oscillations in electrochemical growth of Zn dendrites. Phys. Rev. B 39, 4536 (1989)

    Article  CAS  Google Scholar 

  29. Lotka, A.J.: Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595 (1920)

    Article  CAS  Google Scholar 

  30. Tyson, J.J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58, 3919 (1973)

    Article  CAS  Google Scholar 

  31. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. J. Chem. Phys. 60, 1877 (1974)

    Article  CAS  Google Scholar 

  32. Winfree, A.T.: The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Edu. 61, 661 (1984)

    Article  Google Scholar 

  33. Belousov B.P., Field R.J., Burger M.: A Periodic Reaction and Its Mechanism: in Oscillations and Traveling Waves in Chemical Systems Ed. Wiley, New York, pp. 605–613 (1985)

    Google Scholar 

  34. Hall, L.D., Waterton, J.C.: A method for determining the spatial distribution of spin-labeled organic ligands covalently bound to a noncrystalline surface: dipolar contribution to nitroxide EPR spectrum. J. Am. Chem. Soc. 101, 3697 (1979)

    Article  CAS  Google Scholar 

  35. Atkins, P., de Atkin, P.J.: Physical Chemistry. Oxford University Press, pp. 60–80 (2006)

    Google Scholar 

  36. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two dimensional liquid-phase self-oscillating system. Nature 225, 535 (1970)

    Article  CAS  Google Scholar 

  37. Demas, H.N., Diemente, D.: An oscillating chemical reaction with a luminescent indicator. J. Chem. Edu. 50, 357 (1973)

    Article  CAS  Google Scholar 

  38. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos. 1, 379 (1991)

    Article  Google Scholar 

  39. Noyes, R.M., Field, R.J., Thompson, R.C.: Mechanism of the reduction of the Br(V) by single electron reducing agents. J. Am. Chem. Soc. 93, 7315 (1971)

    Article  CAS  Google Scholar 

  40. Degn, H.: Effect of bromine derivatives of malonic acid on the oscillating reaction of malonic acid, cerium ions and bromated. Nature 213, 589 (1967)

    Article  CAS  Google Scholar 

  41. Wood, P.M., Ross, J.: A quantitative study of chemical waves in the Belousov- Zhabotinsky reaction. J. Chem. Phys. 82, 1924 (1985)

    Article  CAS  Google Scholar 

  42. Field, R.J., Burger, M.: Oscillations and Traveling Waves in Chemical Systems. Wiley, New York, pp. 120–140 (1985)

    Google Scholar 

  43. Noyes, R.M., Field, R.J., Körös, E.: Oscillations in chemical system I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94, 1394 (1972)

    Google Scholar 

  44. William, C.T.: A threshold phenomenon in the Field-Noyes model of the Belousov-Zhabotinsky reaction. J. Math. Anal. Appl. 58, 233 (1977)

    Article  Google Scholar 

  45. Zaikin, A.N., Zhabotinsky, A.M.: Autowave processes in distributed chemical system. J. Theor. Biol. 40, 45 (1973)

    Article  Google Scholar 

  46. Scott, S.K.: Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, New York (1994)

    Google Scholar 

  47. Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: Oscillations, patterns and chaos. J. Phys. Chem. 100, 13132 (1996)

    Article  CAS  Google Scholar 

  48. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535 (1970)

    Article  CAS  Google Scholar 

  49. Winfree, A.T.: The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661 (1984)

    Article  Google Scholar 

  50. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 1, 379 (1991)

    Article  Google Scholar 

  51. Epstein, I.R.: The role of flow systems in far-from-equilibrium dynamics. J. Chem. Educ. 66, 191 (1989)

    Article  CAS  Google Scholar 

  52. Zhabotinsky, A.M.: Periodical oxidation of malonic acid in solution: a study of the Belousov reaction kinetics. Biofizika 9, 1306 (1964)

    Google Scholar 

  53. Field, R.J., Koros, E., Noyes, R.M.: Oscillations in chemical systems: Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649 (1972)

    Article  CAS  Google Scholar 

  54. Vidal, C., Roux, J.C., Rossi, A.: Quantitative measurement of intermediate species in sustained Belousov-Zhabotinskii oscillations. J. Am. Chem. Soc. 102, 1241 (1980)

    Article  CAS  Google Scholar 

  55. Hansen, E.W., Ruoff, P.: Determination of enolization rates and overall stoichiometry from proton NMR records of the methylmalonic acid Belousov-Zhabotinskii reaction. J. Phys. Chem. 93, 2696 (1989)

    Article  CAS  Google Scholar 

  56. Balcon, B.J., Carpenter, T.A., Hall, L.D.: Methacrylic acid polymerization. Traveling waves observed by nuclear magnetic resonance imaging. Macromolecules 25, 6818 (1992)

    Article  Google Scholar 

  57. Roelofs, M.G., Jensen, J.H.: EPR oscillations during oxidation of benzaldehyde. J. Phys. Chem. 91, 3380 (1987)

    Article  CAS  Google Scholar 

  58. Jimenez-Prieto, R., Silva, M., Perez-Bendito, D.: Approaching the use of oscillating reactions for analytical monitoring. Analyst 123, 1 (1998)

    Article  Google Scholar 

  59. Ball, P.: The Self-Made Tapestry, Pattern formation in nature. Oxford University Press, New York, pp. 1–287 (1999)

    Google Scholar 

  60. Painter, K.J., Hunt, G.S., Wells, K.L., Johansson, J.A., Headon, D.J.: Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis. Interface Focus 2, 433 (2012)

    Article  CAS  Google Scholar 

  61. Scott, S.K.: Oscillations, Waves, and Chaos in Chemical Kinetics. Oxford University Press, New York (1994)

    Google Scholar 

  62. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37 (1992)

    Article  Google Scholar 

  63. Maselko, J., Reckley, J.S., Showalter, K.: Regular and irregular spatial patterns in an immobilized-catlyst Belousov-Zhabotinsky reaction. J. Phys. Chem. 93, 2774 (1989)

    Article  CAS  Google Scholar 

  64. Winfree, A.T.: Scroll-shaped waves of chemical activity in three dimensions. Science 181, 937 (1973)

    Article  CAS  Google Scholar 

  65. Tyson, J.J., Glass, L., Arthur, T.: Winfree (1942–2002). J. Theor. Bio. 230, 433 (2004)

    Google Scholar 

  66. Biosa, G., Bastianoni, S., Rustici, M.: Chemical waves. Chem. Eur. J. 12, 3430 (2006)

    Article  CAS  Google Scholar 

  67. Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990)

    Article  CAS  Google Scholar 

  68. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610 (1991)

    Article  Google Scholar 

  69. Vang, V.K., Epstein, I.R.: Pattern formation mechanism in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673 (2009)

    Article  Google Scholar 

  70. Hoar, T.P., Schulman, J.H.: Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature 152, 102 (1943)

    Article  CAS  Google Scholar 

  71. Bourrel, M., Schechter, R.S.: Microemulsions and Related Systems—Formulation, Solvency, and Physical Properties. Marcel Dekker, Inc., New York, pp. 30–78 (1988)

    Google Scholar 

  72. Schwartz, L.J., DeCiantis, C.L., Chapman, S., Kelley, B.K., Hornak, J.P.: Motions of water, decane, and AOT in reverse micelle solutions. Langmuir 15, 5461 (1999)

    Article  CAS  Google Scholar 

  73. Paul, B.K., Moulik, S.P.: Use and applications of microemulsions. Curr. Scie. 80, 990 (2001)

    CAS  Google Scholar 

  74. Prince, L.M.: Microemulsions: Theory and Practice. Academic Press, New York, pp. 111–129 (1977)

    Google Scholar 

  75. Balasubramanian, D., Rodley, G.A.: Incorporation of chemical oscillators into organized surfactant assemblies. J. Phys. Chem. 92, 5995 (1988)

    Article  CAS  Google Scholar 

  76. Vanag, V.K.: Waves and patterns in reaction–diffusion system. Belousov-Zhabotinsky reaction in water-oil-microemulsions. Phys. Usp. 47, 923 (2004)

    Article  CAS  Google Scholar 

  77. Hildebrand, M.: Self-organized nanostructures in surface chemical reactions: Mechanisms and mesoscopic modeling. Chaos 12, 144 (2002)

    Article  CAS  Google Scholar 

  78. Sachs, C., Hildebrand, M., Voelkening, S., Wintterlin, J., Ertl, G.: Spatiotemporal self-organization in a surface reaction: From the atomic to the mesoscopic scale. Science 293, 1635 (2001)

    Article  CAS  Google Scholar 

  79. Shibata, T., Mikhailov, A.S.: Nonequilibrium self-organization phenomena in active Langmuir monolayers. Chaos 16, 37108 (2006)

    Article  CAS  Google Scholar 

  80. Epstein, I.R., Pojman, J.A., Steinbock, O.: Introduction: Self-Organization in Nonequilibrium Chemical Systems. Chaos 16, 37101 (2006)

    Article  CAS  Google Scholar 

  81. Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Keser, M., Amstutz, A.: Supramolecular materials: Self-organized nanostructures. Science 276, 384 (1997)

    Article  CAS  Google Scholar 

  82. Shenhar, R., Norsten, T.B., Rotello, V.M.: Polymer-mediated nanoparticle assembly: Structural, control and applications. Adv. Mater. 17, 657 (2005)

    Article  CAS  Google Scholar 

  83. Lopes, W.A., Jaeger, H.M.: Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735 (2001)

    Article  CAS  Google Scholar 

  84. Ray, W.H., Villa, C.M.: Nonlinear dynamics found in polymerization processes. Chem. Eng. Sci. 55, 275 (2000)

    Article  Google Scholar 

  85. Pojman, J.A., Trang-Cong-Miyata, Q. (eds.): Nonlinear dynamics in polymeric systems. ACS Symposium Series no. 869. Oxford University Press, New York, pp. 161–188 (2000)

    Google Scholar 

  86. Kawczyński, A.L.: Chemical reactions—from equilibrium, through dissipative structures to chaos, pp. 189–210. WNT, Warsaw (in Polish) (1990)

    Google Scholar 

  87. Okabe, Y., Kyu, T., Saito, H., Inoue, T.: Spiral crystal growth in blends of poly(vinylidene fluoride) and poly(vinyl acetate). Macromolecular 31, 5823 (1998)

    Article  CAS  Google Scholar 

  88. Ferreiro, V., Douglas, J.F., Warren, J., Karim, A.: Growth pulsations in symmetric dendritic crystallization in thin polymer blend films. Phys. Rev. E 65, 51606 (2002)

    Article  CAS  Google Scholar 

  89. Orlik, M.: Self-organization in nonlinear dynamical systems and its relation to the materials science. J. Solid State Electrochem. 13, 245 (2009)

    Article  CAS  Google Scholar 

  90. Epstein, I.R., Pojman, J.A.: Nonlinear dynamics related to polymeric systems. Chaos 9, 255 (1999)

    Article  CAS  Google Scholar 

  91. Cabral, J.T., Hudson, S.D., Harrison, C., Douglas, J.F.: Frontal photopolymerization for microfluidic applications. Langmuir 20, 10020 (2004)

    Article  CAS  Google Scholar 

  92. Sawada, Y., Dougherty, A., Gollub, J.P.: Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260 (1986)

    Article  CAS  Google Scholar 

  93. Yoshida, R., Takahashi, T., Yamaguchi, T., Ichijo, H.: Self-oscillating gels. Adv. Mater. 9, 175 (1997)

    Article  CAS  Google Scholar 

  94. Libbrecht, K.G.: The physics of snow crystals. Rep. Prog. Phys. 68, 855 (2003)

    Article  Google Scholar 

  95. Henry, A.I., Courty, A., Goubet, N., Pileni, M.P.: How do self-ordered silver nanocrystals influence their growth into triangular single crystals. J. Phys. Chem. C 112, 48 (2008)

    Article  CAS  Google Scholar 

  96. Langer, J.S.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1 (1980)

    Article  CAS  Google Scholar 

  97. Doughterty, A., Kaplan, P.D., Gollub, J.P.: Development of sidebranching in dendritic crystal growth. Phys. Rev. Lett. 58, 652 (1987)

    Google Scholar 

  98. Ferreira Jr, S.C.: Effects of the screening breakdown in the diffusion-limited aggregation model. Eur. Phys. J. 42, 263 (2004)

    Article  CAS  Google Scholar 

  99. Bogoyavlensky, V.A., Che-Rnova, N.A.: Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology. Phys. Rev. E 61, 1629 (2000)

    Article  Google Scholar 

  100. Magill, J.H.: Review spherulites: a personal perspective. J. Mater. Sci. 36, 3143 (2001)

    Article  CAS  Google Scholar 

  101. Goldenfeld, N.: Theory of spherulitic crystallization. J. Cryst. Growth 84, 601 (1987)

    Google Scholar 

  102. Ryschenkow, G., Faivre, G.: Bulk crystallization of liquid selenium Primary nucleation, growth kinetics and modes of crystallization. J. Cryst. Growth 87, 221 (1988)

    Google Scholar 

  103. Phillips, P.J.: Spherulitic crystallization in macromolecules, edited by D.T.J. Hurle, Handbook of Crystal Growth, Vol. 2, Elsevier, Amsterdam (1993)

    Google Scholar 

  104. Keith, H.D., Padden Jr, P.D.: A discussion of spherulitic crystallization and spherulitic morphology in high polymers. Polymer 27, 1463 (1986)

    Article  CAS  Google Scholar 

  105. Pimpinelli, A., Villain, J.: Physics of Crystal Growth. Cambridge University Press, Cambridge, pp. 131–167 (1998)

    Google Scholar 

  106. Glicksman, M.E., Marsh, S.P.: The dendrite. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, vol. 1, pp. 1075–1121. North-Holland, Amsterdam (1993)

    Google Scholar 

  107. Fleury, V., Gouyet, J.-F., Leonetti, M. (eds.): Branching in Nature. Springer, Berlin, pp. 98–135 (2001)

    Google Scholar 

  108. Libbrecht, K.G.: Morphogenesis on Ice: The Physics of Snow Crystals. http://pr.caltech.edu/periodicals/EandS/archives/LXIV1.html

  109. Ohara, M., Reid, R.C.: Modeling Crystal Growth Rates from Solution. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 121–142 (1973)

    Google Scholar 

  110. Saito, Y.: Statistical Physics of Crystal Growth. World Scientific, Singapore, pp. 89–134 (1996)

    Google Scholar 

  111. Liu, X.-Y., Bennema, P.: Theoretical consideration of the growth morphology of crystals. Phys. Rev. B 53, 2314 (1996)

    Google Scholar 

  112. Witten, T., Sander, L.: Diffusion-limited aggregation, a kinematic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Google Scholar 

  113. Jullien, R.: Aggregation phenomena and fractal aggregates. Contemp. Phys. 28, 477 (1987)

    Article  Google Scholar 

  114. Meakin, P.: The growth of rough surfaces and interfaces. Phys. Rep. 235, 189 (1993)

    Article  CAS  Google Scholar 

  115. Marsili, M., Maritan, A., Toigo, F., Banavar, J.R.: Stochastic growth equations and reparametrization invariance. Rev. Mod. Phys. 68, 963 (1996)

    Article  Google Scholar 

  116. Nazzarro, M., Nieto, F., Ramirez-Pastor, A.J.: Influence of surface heterogeneities on the formation of diffusion-limited-aggregation. Surf. Sci. 497, 275 (2002)

    Article  CAS  Google Scholar 

  117. Magill, J.H.: Review Spherulites: A personal perspective. J. Mater. Sci. 36, 3143 (2001)

    Article  CAS  Google Scholar 

  118. Phillips, P.J.: Spherulitic crystallization in macromolecules. In: Hurle, D.T.J. (ed.) Handbook of Crystal Growth, vol. 2. Elsevier, Amsterdam (1993)

    Google Scholar 

  119. Keith, H.D., Padden Jr, P.D.: A discussion of spherulitic crystallization and spherulitic morphology in high polymers. Polymer 27, 1463 (1986)

    Article  CAS  Google Scholar 

  120. Tracy S.L., Williams D.A., Jennings H.M.: The growth of calcite spherulites from solution II. Kinetics of formation, J. Crys. Growth 193, 382 (1998)

    Google Scholar 

  121. Goldenfeld, N., Chan P.Y., Veysey J.: Dynamics of precipitation formation at geothermal hot springs, Phys. Rev. Lett. 96, 254501 (2006)

    Google Scholar 

  122. Makki, R., Roszol, L., Pagano, J., Steinbock, O.: Tubular precipitation structures: materials synthesis under nonequilibrium conditions. Phil. Trans. R. Soc. A 370, 2848 (2012)

    Article  CAS  Google Scholar 

  123. Epstein, I.R., Pojman, J.A., Steinbock, O.: Self-organization in nonequilibrium chemical systems: a brief introduction. Chaos 16, 037101 (2006)

    Article  CAS  Google Scholar 

  124. Makki, R., Steinbock, O.: Nonequilibrium synthesis of silica-supported magnetite tubes and mechanical control of their magnetic properties. J. Ame. Chem. Soc. 134, 15519 (2012)

    Article  CAS  Google Scholar 

  125. Zhang, Y., Li, N., Gao, Y., Kuang, Y., Fraden, S., Epstein, I.R., Xu, B.: Post- self-assembly cross-linking of molecular nanofibers for oscillatory hydrogels. Langmuir 28, 3063 (2012)

    Article  CAS  Google Scholar 

  126. Rossi, F., Vanag, V.K., Epstein, I.R.: Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the belousov–zhabotinsky reaction. Chem.–Eur. J. 17, 2138 (2011)

    Google Scholar 

  127. Mao, S., Gao, Q.Y., Wang, H., Zheng, J., Epstein, I.R.: Oscillations and mechanistic analysis of the chlorite-sulfide reaction in a continuous-flow stirred tank reactor. J. Phys. Chem. A 113, 1231 (2009)

    Article  CAS  Google Scholar 

  128. Wrobel, M.M., Bánsági Jr, T., Scott, S.K., Taylor, A.F., Bounds, C.O., Carranzo, A., Pojman, J.A.: pH wave-front propagation in the urea-urease reaction. Biophys. J. 103, 610 (2012)

    Article  CAS  Google Scholar 

  129. Tinsley, M.R., Taylor, A.F., Huang, Z., Showalter, K.: Complex organizing centers and spatiotemporal behavior in groups of oscillatory particles. Phys. Chem. Chem. Phys. 13, 17802 (2011)

    Article  CAS  Google Scholar 

  130. Usharani, S., Srivdhya, J., Gopinathan, M.S., Pradeep, T.: Concentration of CO2 over melting ice oscillates. Phys. Rev. Lett. 93, 5634 (2004)

    Article  CAS  Google Scholar 

  131. Sriram, K., Gopinathan, M.S.: A two variable dealy model for the circadian rhythm of Neurospora crassa. J. Theor. Biol. 231, 23 (2004)

    Article  CAS  Google Scholar 

  132. Das, I., Agrawal, N.R., Gupta, S.K., Gupta, S.K., Rastogi, R.P.: Fractal growth kinetic and electric potential oscillations during electropolymerization of pyrrole. J. Phys. Chem. A 113, 5296 (2009)

    Article  CAS  Google Scholar 

  133. Das, I., Goel, N., Agrawal, N.R., Gupta, S.K.: Growth pattern of dendrimers and electric potential oscillations during electropolymerization of pyrrole using monomono and mixed surfactants. J. Phys. Chem. B 114, 12888 (2010)

    Article  CAS  Google Scholar 

  134. Frank, G.M. (ed.):. Oscillatory Processes in Biological and Chemical Systems. Nauka, Moscow, vol. 1, pp. 132–187 (1967)

    Google Scholar 

  135. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 1, 379 (1991)

    Article  Google Scholar 

  136. Fechner, GTh: Time series in the electrochemical oscillatory regime. J. Schweigg 53, 61 (1828)

    Google Scholar 

  137. Ostwald, W.: Periodisch veraenderliche reaktionsgeschwindigkeite. Phys. Zeitsch. 8, 87 (1899)

    Google Scholar 

  138. Deng, H.: Oscillating chemical reactions in homogenous phase. J. Chem. Ed. 49, 302 (1972)

    Article  Google Scholar 

  139. Rice, F.O., Reiff, O.M.: The thermal decomposition of hydrogen peroxide. J. Phys. Chem. 31, 1352 (1927)

    Article  CAS  Google Scholar 

  140. Winfree, A.T.: The prehistory of Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661 (1984)

    Article  Google Scholar 

  141. Lotka, A.J.: Undammed oscillations derived from the law of mass action. J. Ame. Chem. Soc. 42, 1595 (1920)

    Article  CAS  Google Scholar 

  142. Heilweil, E.J., Henchman, N.J., Epstein, I.R.: Sequential oscillations in mixed substrate Belousov-Zhabotinskii systems. J. Ame. Chem. Soc. 101, 3698 (1979)

    Article  CAS  Google Scholar 

  143. Srivastava, P.K., Mori, Y., Hanazaki, I.: Wavelength-dependent photo-inhibition of chemical oscillators: uncatalyzed oscillators with phenol and aniline as substrate. Chem. Phys. Lett. 177, 213 (1991)

    Article  CAS  Google Scholar 

  144. Srivastava, P.K., Mori, Y., Hanazaki, I.: Photo-inhibition of chemical oscillation in Ru(bpy)2+-catalyzed Belousov-Zhabotinskii reaction. Chem. Phys. Lett. 190, 279 (1992)

    Article  CAS  Google Scholar 

  145. Srivastava, P.K., Mari, Y., Hanazaki, I.: Duel frequency chemical oscillators with acetylophenols as substrates. J. Phys. Chem. 95, 1636 (1991)

    Article  CAS  Google Scholar 

  146. Rastogi, R.P., Mishra, G.P., Das, I., Sharma, A.: Sequential oscillations in bromine hydrolysis controlled oscillators in a closed reactor. J. Phys. Chem. 97, 2571 (1993)

    Article  CAS  Google Scholar 

  147. Zhao, Y., Wang, S., Varela, H., Gao, Q., Hu, X., Yang, J., Epstein, I.R.: Spatiotemporal pattern formation in the oscillatory electro-oxidation of sulfide on platinum disk. J. Phys. Chem. C 115, 12965 (2011)

    Article  CAS  Google Scholar 

  148. Rudovics, B., Barillot, E., Davies, P.W., Dulos, E., Boissonade, J., De, P.: Kepper, Experimental studies and quantitative modeling of Turing patterns in the (Chlorine dioxide, iodine malonic acid) reaction. J. Phys. Chem. A 103, 1790 (1999)

    Article  CAS  Google Scholar 

  149. Watzl, M., Munster, A.F.: Turing-like spatial patterns in a polyacrylamidemethylene blue-sulfide-oxygen system. Chem. Phys. Lett. 242, 273 (1995)

    Article  CAS  Google Scholar 

  150. Das, I., Kumar, A., Agrawal, N.R., Lall, R.S.: Non-equilibrium growth patterns of carboxylic acids crystallized on microslides. Ind. J. Chem. A 38, 307 (1999)

    Google Scholar 

  151. Wang, T.: An-Wu Xu and H. Cölfen, Formation of self-organized dynamic structure patterns of barium carbonate crystals in polymer controlled crystallization. Angew. Chem. Int. Ed. 45, 4451 (2006)

    Article  CAS  Google Scholar 

  152. Li, Gao-Ren, Xi-Hong, Lu, Dun-Lin, Qu, Yao, Chen-Zhong, Zheng, Fu-lin, Qiong, Bu, Dawa, Ci-Ren, Tong, Ye-Xiang: Electrochemical growth and control of ZnO dendritic structures. Electrochim. Acta 50, 5050 (2005)

    Article  CAS  Google Scholar 

  153. Das, I., Choudhary, R., Gupta, S.K., Agrawal, P.: Nanostructured growth patterns and chaotic oscillations in potential during electropolymerization of aniline in the presence of surfactants. Phys. Chem. B 115, 8724 (2011)

    Article  CAS  Google Scholar 

  154. Das, I., Agrawal, N.R., Choudhary, R., Gupta, S.K.: Fractal growth patterns and oscillations in potential during electropolymerization of aniline with mono- and mixed surfactants. Fractals 19, 317 (2011)

    Article  Google Scholar 

  155. Kasperek, G.J., Bruice, T.C.: Observation on an oscillating reaction. The reaction of potassium bromate, ceric sulfate and a dicarboxylic acid. Inor. Chem. 10, 382 (1971)

    Article  Google Scholar 

  156. Beck, M.T., Varadi, Z.B.: Unsaturated dicarboxylic acids as substrates in oscillating reactions involving bromated sulfuric acid and a catalyst. React. Kinet. Catal. Lett. 6, 275 (1977)

    Article  CAS  Google Scholar 

  157. Showalter, K.: Pattern formation in ferroin-bromate system. J. Chem. Phys. 73, 3735 (1980)

    Article  CAS  Google Scholar 

  158. Farage, V.J., Stroot, P.H., Janjic, D.: Reaction chimiques oscillantes (type Belousov-Zhaboyinskii) impliquant des cetones cycliques et aliphatiques. Helv. Chim. Acta 60, 231 (1977)

    Article  CAS  Google Scholar 

  159. Ganaie, N.B., Nath, M.A., Peerzada, G.M.: Effect of mixed methyl ketones on the catalyzed resorcinol based oscillatory reaction at different temperatures. J. Indust. Eng. Chem. 16, 634 (2010)

    Article  CAS  Google Scholar 

  160. Lone, M.A., Nath, M.A., Ganie, N.B., Peerzada, G.M.: Oscillating behavior of galic acid-methyl ketone system catalyzed by metal ion. Ind. J. Chem. Sec. A 47, 705 (2008)

    Google Scholar 

  161. Orban, M., Körös, E., Noyes, R.M.: Chemical oscillations during the uncatalyzed reaction of aromatic compounds with bromated. 2. A plausible skeleton mechanism. J. Phys. Chem. 83, 3056 (1979)

    Article  CAS  Google Scholar 

  162. Shah, I.A., Peerzada, G.M., Bashir, N.: A kinetic study on catechol-based Belousov-Zhabotinsky reaction. Inte. J. Chem. Kine. 45, 141 (2013)

    Article  CAS  Google Scholar 

  163. Salter, L.F., Sheppard, J.G.: A duel frequency Belousov-Zhabotinskii oscillating reaction with ethylacetoaceatate as organic substrate. Int. J. Chem. Kinett 14, 815 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Srivastava .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Srivastava, R., Yadav, N., Chattopadhyay, J. (2016). Introduction. In: Growth and Form of Self-organized Branched Crystal Pattern in Nonlinear Chemical System. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-0864-1_1

Download citation

Publish with us

Policies and ethics