Skip to main content

Abstract

Fine particulate matter (PM2.5) is the major air pollutant in China, leading serious threats to human health. Urban construction land spatial form controls the overall aerodynamic roughness of a city, and effects PM2.5 dispersion through wind speed, resulting in PM2.5 concentration uneven spatial distribution. We establish urban construction land use form-PM2.5 dispersion modeling based on Garratt Formula and FLOWSTAR model theoretically, then we use the measured data of the Xuzhou in the winter to verify the model and prove our hypothesis. The PM2.5 concentration that we acquire in Xuzhou is decreasing from the center of the city and the figure of PM2.5 concentration fits the model. This thesis intends to demonstrate that urban construction land spatial form is an important factor effecting the PM2.5 dispersion, and explores the reasonable model to explain it, providing recommendations for urban planning, especially in urban renewal and urban expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng S, Lang J, Zhou Y et al (2013) A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM 2.5 pollution in Beijing, China. Atmos Environ 79:308–316

    Article  Google Scholar 

  2. Huang W, Tan J, Kan H et al (2009) Visibility, air quality and daily mortality in Shanghai, China. Sci Total Environ 407(10):3295–3300

    Article  Google Scholar 

  3. Lang JL, Cheng SY, Li JB et al (2013) A monitoring and modeling study to investigate regional transport and characteristics of PM2. 5 pollution. Aerosol Air Qual Res 13(3):943–956

    Google Scholar 

  4. Wang Y, Zhuang G, Sun Y et al (2006) The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing[J]. Atmos Environ 40(34):6579–6591

    Article  Google Scholar 

  5. Donkelaar AV, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118(6):847–855

    Article  Google Scholar 

  6. Dockery DW, Pope CA, Xu X et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    Article  Google Scholar 

  7. Mahrt L (1999) Stratified atmospheric boundary layers. Bound-Layer Meteorol 90(3):375–396

    Article  Google Scholar 

  8. Han L, Zhou W, Li W et al (2014) Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities. Environ Pollut 194(7):163–170

    Article  Google Scholar 

  9. Morton BJ, Rodríguez DA, Song Y et al (2007) Using TRANUS to construct a land use-transportation-emissions model of Charlotte, North Carolina. In: Proceedings of the transportation land use, planning, and air quality conference

    Google Scholar 

  10. Hang J, Li Y, Sandberg M et al (2012) The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build Environ 56:346–360

    Article  Google Scholar 

  11. Yuan C, Ng E, Norford LK (2014) Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build Environ 71:245–258

    Article  Google Scholar 

  12. Berghauser Pont M, Haupt P (2010) Spacematrix: space, density and urban form. Nai Publishers, Rotterdam

    Google Scholar 

  13. Mahrt L (1999) Stratified atmospheric boundary layers. Bound-Layer Meteorol 90(3):375–396

    Article  Google Scholar 

  14. Bottema M (1997) Urban roughness modelling in relation to pollutant dispersion. Atmos Environ 31(18):3059–3075

    Article  Google Scholar 

  15. Salizzoni P, Marro M, Soulhac L et al (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Bound-Layer Meteorol 141(3):393–414

    Article  Google Scholar 

  16. Garratt JR (1992) The atmospheric boundary layer, Cambridge atmospheric and space science series, vol 416. Cambridge University Press, Cambridge, p 444

    Google Scholar 

  17. Carruthers DJ, Hunt JCR, Weng WS (1988) A computational model of stratified turbulent airflow over hills–FLOWSTAR I. In: Proceedings of ENVIROSOFT: computer techniques in environmental studies, Springer-Verlag, pp 481–492

    Google Scholar 

  18. Belcher SE, Hunt JCR (1998) Turbulent flow over hills and waves. Annu Rev Fluid Mech 30(1):507–538

    Article  Google Scholar 

  19. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Article  Google Scholar 

  20. Bottema M (1997) Urban roughness modelling in relation to pollutant dispersion. Atmos Environ 31(18):3059–3075

    Article  Google Scholar 

  21. Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Bound-Layer Meteorol 111(1):55–84

    Article  Google Scholar 

  22. Hu ZB, Yu BF (2008). Review on methods calculating aerodynamic parameters over urban underlying surface. J Meteorol Environ

    Google Scholar 

  23. Xin C, Tang et al (2014) Analysis and empirical research on the mechanism of urban scale expansion—a case study of typical regions. Science and technology research (11)

    Google Scholar 

  24. Yan Y, Xue L (2014) The study of expansion of urban land in XuZhou City based on GIS

    Google Scholar 

  25. Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban Forest Urban Green 4(3):115–123

    Article  Google Scholar 

  26. Yong W, Yanping L, Jiangbo L et al (2015) The effect of PM2.5/PM10 variation based on based on precipitable water vapor and wind speed. J Catastrophology 30(1):5–7

    Google Scholar 

  27. Carruthers DJ, Holroyd RJ, Hunt JCR et al (1994) UK-ADMS: a new approach to modelling dispersion in the earth’s atmospheric boundary layer. J Wind Eng Ind Aerodyn 52:139–153

    Article  Google Scholar 

  28. Hoek G, Beelen R, de Hoogh K et al (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42(33):7561–7578

    Article  Google Scholar 

Download references

Acknowledgements

We thank Institute of Land Science and Real Estate, Zhejiang University and School of Environment Science and Spatial Informatics, China University of Mining and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmei Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Xia, C., Ye, Y., Zhang, S., Liu, J. (2017). Effects of Urban Construction Land Spatial Form on PM2.5 Dispersion. In: Wu, Y., Zheng, S., Luo, J., Wang, W., Mo, Z., Shan, L. (eds) Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate. Springer, Singapore. https://doi.org/10.1007/978-981-10-0855-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0855-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0854-2

  • Online ISBN: 978-981-10-0855-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics