Skip to main content

Assessment of Inflammation in COPD: Are There any Biomarkers that Can be Used to Assess Pulmonary and Systemic Inflammation?

  • Chapter
  • First Online:
Chronic Obstructive Pulmonary Disease

Abstract

Numerous inflammatory substances have been identified as potentially useful biomarkers to evaluate COPD. These substances were derived from sputum, blood, exhaled gas, exhaled breath condensate, and bronchoscopic specimens. However, the majority of these biomarkers are not currently clinically applicable due to the lack of sufficient difference of value between COPD subjects and healthy subjects, insufficient validation in randomized controlled trial, invasive procedure required to obtain specimen directly from the lung, or technical issue preventing reproducible measurements.

Nonetheless, we have biomarkers that can be used to assess pulmonary and systemic inflammation for patients with COPD. Plasma fibrinogen can predict the future incidence of COPD and future FEV1 decline in COPD and non-COPD subjects. In July 2015, the US Food and Drug Administration approved serum fibrinogen as the first COPD biomarker to identify patients that are at a higher risk of exacerbation or death in clinical trials. Researchers hope this approval will accelerate trials for new medications. Serum C-reactive protein is another widely approved biomarker related to COPD diagnosis, exacerbation diagnosis, and patient prognosis. Sputum/blood eosinophils, fractional exhaled nitric oxide, and the T helper type 2 genes can be candidate predictive biomarkers to pick up the asthma-COPD overlap syndrome cases who are amenable to inhaled corticosteroids. The tumor necrosis factor-α-308 variant is associated with COPD risk and emphysematous change especially in Asians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2015. Available from: http://www.goldcopd.org/. Accessed on 20 Sept, 2015.

  2. Sin DD, Vestbo J. Biomarkers in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:543–5.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg SR, Kalhan R. Biomarkers in chronic obstructive pulmonary disease. Transl Res. 2012;159:228–37.

    Article  CAS  PubMed  Google Scholar 

  4. Whorld Health Organization. Biomarkers in Risk Assessment: Validity and Validation. 2001. Available from: http://apps.who.int/bookorders/anglais/detart1.jsp?codlan=1&codcol=16&codcch=222. Accessed on 20 Sept, 2015.

  5. Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke P, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185:1065–72.

    Article  CAS  PubMed  Google Scholar 

  6. ECLIPSE Study Investigators. Lessons from ECLIPSE: a review of COPD biomarkers. Thorax. 2014;69:666–72.

    Article  Google Scholar 

  7. Kaneda H, Saito Y. The prognostic factor tumor, node, metastasis classification: how helpful is it as a predictive factor of the success of a specific treatment? J Thorac Oncol. 2014;9, e64.

    Article  PubMed  Google Scholar 

  8. Criner GJ, Connett JE, Aaron SD, Albert RK, Bailey WC, Casaburi R, et al. Simvastatin for the prevention of exacerbations in moderate-to-severe COPD. N Engl J Med. 2014;370:2201–10.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horita N, Miyazawa N, Morita S, Kojima R, Inoue M, Ishigatsubo Y, et al. Evidence suggesting that oral corticosteroids increase mortality in stable chronic obstructive pulmonary disease. Respir Res. 2014;15:37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crapo RO, Jensen RL, Hargreave FE. Airway inflammation in COPD: physiological outcome measures and induced sputum. Eur Respir J Suppl. 2003;41:19s–28.

    Article  CAS  PubMed  Google Scholar 

  11. Tsoumakidou M, Tzanakis N, Siafakas NM. Induced sputum in the investigation of airway inflammation of COPD. Respir Med. 2003;97:863–71.

    Article  CAS  PubMed  Google Scholar 

  12. Confalonieri M, Mainardi E, Della Porta R, Bernorio S, Gandola L, Beghè B, et al. Inhaled corticosteroids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax. 1998;53:583–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanehara M, Yokoyama A, Tomoda Y, Shiota N, Iwamoto H, Ishikawa N, et al. Anti-inflammatory effects and clinical efficacy of theophylline and tulobuterol in mild-to-moderate chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21:874–8.

    Article  CAS  PubMed  Google Scholar 

  14. Saetta M, Di Stefano A, Maestrelli P, Turato G, Ruggieri MP, Roggeri A, et al. Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med. 1994;150:1646–52.

    Article  CAS  PubMed  Google Scholar 

  15. Fujimoto K, Yasuo M, Urushibata K, Hanaoka M, Koizumi T, Kubo K. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respir J. 2005;25:640–6.

    Article  CAS  PubMed  Google Scholar 

  16. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–21.

    Article  PubMed  Google Scholar 

  17. Global Initiative For Asthma. Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Available from: http://www.ginasthma.org/documents/14. Accessed on 20 Sept, 2015.

  18. Horita N, Miyazawa N, Tomaru K, Inoue M, Kaneko T. Long-acting muscarinic antagonist + long-acting beta agonist versus long-acting beta agonist + inhaled corticosteroid for COPD: a systematic review and meta-analysis. Respirology. 2015;20:1153–9.

    Article  PubMed  Google Scholar 

  19. Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, Postma DS, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191:758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitaguchi Y, Komatsu Y, Fujimoto K, Hanaoka M, Kubo K. Sputum eosinophilia can predict responsiveness to inhaled corticosteroid treatment in patients with overlap syndrome of COPD and asthma. Int J Chron Obstruct Pulmon Dis. 2012;7:283–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhowmik A, Seemungal TA, Sapsford RJ, Wedzicha JA. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax. 2000;55:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agustí A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7, e37483.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thomsen M, Ingebrigtsen TS, Marott JL, Dahl M, Lange P, Vestbo J, et al. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA. 2013;309:2353–61.

    Article  CAS  PubMed  Google Scholar 

  24. Lock-Johansson S, Vestbo J, Sorensen GL. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease. Respir Res. 2014;15:147.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax. 2013;68(7):670–6.

    Article  PubMed  Google Scholar 

  26. COPD Foundation. FDA Approves First COPD Biomarker: Paving Way for New, Improved Treatments and Cures. Available from: http://www.copdfoundation.org/About-Us/Press-Room/Press-Releases/ID/303/FDA-Approves-First-COPD-Biomarker-Paving-Way-for-New-Improved-Treatments-and-Cures.aspx. Accessed on 20 Sept, 2015.

  27. Dahl M, Tybjaerg-Hansen A, Vestbo J, Lange P, Nordestgaard BG. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1008–11.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson GP. COPD, asthma and C-reactive protein. Eur Respir J. 2006;27:874–6.

    Article  CAS  PubMed  Google Scholar 

  29. Heidari B. The importance of C-reactive protein and other inflammatory markers in patients with chronic obstructive pulmonary disease. Caspian J Intern Med. 2012;3:428–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Bunjhoo H, Xiong W, Xu Y, Yang D. Association between C-reactive protein concentration and chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Int Med Res. 2012;40:1629–35.

    Article  CAS  PubMed  Google Scholar 

  31. Lacoma A, Prat C, Andreo F, Lores L, Ruiz-Manzano J, Ausina V, et al. Value of procalcitonin, C-reactive protein, and neopterin in exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2011;6:157–69.

    PubMed  PubMed Central  Google Scholar 

  32. Soler N, Esperatti M, Ewig S, Huerta A, Agustí C, Torres A. Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Eur Respir J. 2012;40:1344–53.

    Article  CAS  PubMed  Google Scholar 

  33. Lahousse L, Loth DW, Joos GF, Hofman A, Leufkens HG, Brusselle GG, et al. Statins, systemic inflammation and risk of death in COPD: the Rotterdam study. Pulm Pharmacol Ther. 2013;26:212–7.

    Article  CAS  PubMed  Google Scholar 

  34. Man SF, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61:849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015;3:435–42.

    Article  CAS  PubMed  Google Scholar 

  36. Schuetz P, Müller B, Christ-Crain M, Stolz D, Tamm M, Bouadma L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev. 2012;9, CD007498.

    Google Scholar 

  37. Sin DD, Miller BE, Duvoix A, Man SF, Zhang X, Silverman EK, et al. Serum PARC/CCL-18 concentrations and health outcomes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Broeckaert F, Bernard A. Clara cell secretory protein (CC16): characteristics and perspectives as lung peripheral biomarker. Clin Exp Allergy. 2000;30(4):469–75.

    Article  CAS  PubMed  Google Scholar 

  39. Bowler RP. Surfactant protein D as a biomarker for chronic obstructive pulmonary disease. COPD. 2012;9:651–3.

    Article  PubMed  Google Scholar 

  40. Barnes PJ, Chowdhury B, Kharitonov SA, Magnussen H, Page CP, Postma D, et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174:6–14.

    Article  CAS  PubMed  Google Scholar 

  41. Malerba M, Radaeli A, Olivini A, Damiani G, Ragnoli B, Montuschi P, et al. Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed Res Int. 2014;2014:271918.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Montuschi P. Exhaled breath condensate analysis in patients with COPD. Clin Chim Acta. 2005;356:22–34.

    Article  CAS  PubMed  Google Scholar 

  43. Borrill ZL, Roy K, Singh D. Exhaled breath condensate biomarkers in COPD. Eur Respir J. 2008;32:472–86.

    Article  CAS  PubMed  Google Scholar 

  44. Berndt A, Leme AS, Shapiro SD. Emerging genetics of COPD. EMBO Mol Med. 2012;4:1144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang S, Wang C, Xi B, Li X. Association between the tumour necrosis factor-α-308G/A polymorphism and chronic obstructive pulmonary disease: an update. Respirology. 2011;16:107–15.

    Article  PubMed  Google Scholar 

  46. Sakao S, Tatsumi K, Igari H, Watanabe R, Shino Y, Shirasawa H, et al. Association of tumor necrosis factor-alpha gene promoter polymorphism with low attenuation areas on high-resolution CT in patients with COPD. Chest. 2002;122:416–20.

    Article  CAS  PubMed  Google Scholar 

  47. Sin DD, Anthonisen NR, Soriano JB, Agusti AG. Mortality in COPD: role of comorbidities. Eur Respir J. 2006;28:1245–57.

    Article  CAS  PubMed  Google Scholar 

  48. Fabbri LM, Luppi F, Beghé B, Rabe KF. Complex chronic comorbidities of COPD. Eur Respir J. 2008;31:204–12.

    Article  CAS  PubMed  Google Scholar 

  49. Thomsen M, Dahl M, Lange P, Vestbo J, Nordestgaard BG. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186:982–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bai P, Sun Y, Jin J, Hou J, Li R, Zhang Q, Wang Y. Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir Res. 2011;12:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-shair K, Kolsum U, Dockry R, Morris J, Singh D, Vestbo J. Biomarkers of systemic inflammation and depression and fatigue in moderate clinically stable COPD. Respir Res. 2011;12:3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Divo M, Cote C, de Torres JP, Casanova C, Marin JM, Pinto-Plata V, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186:155–61.

    Article  PubMed  Google Scholar 

  53. Watz H, Waschki B, Kirsten A, Müller KC, Kretschmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest. 2009;136:1039–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kaneko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Horita, N., Kaneko, T. (2017). Assessment of Inflammation in COPD: Are There any Biomarkers that Can be Used to Assess Pulmonary and Systemic Inflammation?. In: Nakamura, H., Aoshiba, K. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-0839-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0839-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0838-2

  • Online ISBN: 978-981-10-0839-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics