Skip to main content

New Anti-inflammatory Drugs for COPD: Is There a Possibility of Developing Drugs That Can Fundamentally Suppress Inflammation?

  • Chapter
  • First Online:

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation that is usually progressive and associated with chronic inflammation of the peripheral airways and lung parenchyma. The current therapeutic strategy for COPD consists mainly of the use of bronchodilators, such as long-acting muscarinic antagonists and long-acting beta stimulants. They reduce respiratory symptoms and exacerbations, but do not reduce airway inflammation or prevent disease progression. We have no effective treatments for suppressing airway inflammation in COPD. There are, however, several candidates as anti-inflammatory drugs that would fundamentally suppress airway inflammation in COPD and might prevent progression of COPD. This chapter discusses some of the most promising new therapeutic drugs that have been discovered and describes the status of development of anti-inflammatory drugs in the field of COPD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.

    Article  CAS  PubMed  Google Scholar 

  2. Barnes PJ. Inhaled corticosteroids in COPD: a controversy. Respiration. 2010;80(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  3. Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013;12(7):543–59.

    Article  PubMed  Google Scholar 

  4. Di Stefano A, Capelli A, Lusuardi M, et al. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med. 1998;158(4):1277–85.

    Article  PubMed  Google Scholar 

  5. Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53.

    Article  CAS  PubMed  Google Scholar 

  6. Saetta M, Baraldo S, Corbino L, et al. CD8 + ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(2):711–7.

    Article  CAS  PubMed  Google Scholar 

  7. Bourbeau J, Christodoulopoulos P, Maltais F, et al. Effect of salmeterol/fluticasone propionate on airway inflammation in COPD: a randomised controlled trial. Thorax. 2007;62(11):938–43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334–56.

    Article  CAS  PubMed  Google Scholar 

  9. Torphy TJ, Undem BJ. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991;46(7):512–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hatzelmann A, Morcillo EJ, Lungarella G, et al. The preclinical pharmacology of roflumilast–a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2010;23(4):235–56.

    Article  CAS  PubMed  Google Scholar 

  11. Spina D. PDE4 inhibitors: current status. Br J Pharmacol. 2008;155(3):308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grootendorst DC, Gauw SA, Verhoosel RM, et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007;62(12):1081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Calverley PM, Sanchez-Toril F, McIvor A, et al. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  14. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374(9691):695–703.

    Article  CAS  PubMed  Google Scholar 

  15. Calverley PM, Rabe KF, Goehring UM, et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374(9691):685–94.

    Article  CAS  PubMed  Google Scholar 

  16. Martinez FJ, Calverley PM, Goehring UM, et al. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385(9971):857–66.

    Article  CAS  PubMed  Google Scholar 

  17. Vestbo J, Tan L, Atkinson G, et al. A controlled trial of 6-weeks’ treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur Respir J. 2009;33(5):1039–44.

    Article  CAS  PubMed  Google Scholar 

  18. Nials AT, Tralau-Stewart CJ, Gascoigne MH, et al. In vivo characterization of GSK256066, a high-affinity inhaled phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther. 2011;337(1):137–44.

    Article  CAS  PubMed  Google Scholar 

  19. Watz H, Mistry SJ, Lazaar AL, et al. Safety and tolerability of the inhaled phosphodiesterase 4 inhibitor GSK256066 in moderate COPD. Pulm Pharmacol Ther. 2013;26(5):588–95.

    Article  CAS  PubMed  Google Scholar 

  20. Moretto N, Caruso P, Bosco R, et al. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration. J Pharmacol Exp Ther. 2015;352(3):559–67.

    Article  PubMed  Google Scholar 

  21. Franciosi LG, Diamant Z, Banner KH, et al. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med. 2013;1(9):714–27.

    Article  CAS  PubMed  Google Scholar 

  22. Calzetta L, Cazzola M, Page CP, et al. Pharmacological characterization of the interaction between the dual phosphodiesterase (PDE) 3/4 inhibitor RPL554 and glycopyrronium on human isolated bronchi and small airways. Pulm Pharmacol Ther. 2015;32:15–23.

    Article  CAS  PubMed  Google Scholar 

  23. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41(6):631–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gan WQ, Man SF, Senthilselvan A, et al. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004;59(7):574–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keatings VM, Collins PD, Scott DM, et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–4.

    Article  CAS  PubMed  Google Scholar 

  26. Rennard SI, Fogarty C, Kelsen S, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(9):926–34.

    Article  CAS  PubMed  Google Scholar 

  27. Dentener MA, Creutzberg EC, Pennings HJ, et al. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration. 2008;76(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  28. Rennard SI, Flavin SK, Agarwal PK, et al. Long-term safety study of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Respir Med. 2013;107(3):424–32.

    Article  PubMed  Google Scholar 

  29. Bafadhel M, McCormick M, Saha S, et al. Profiling of sputum inflammatory mediators in asthma and chronic obstructive pulmonary disease. Respiration. 2012;83(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  30. Caramori G, Adcock IM, Di Stefano A, et al. Cytokine inhibition in the treatment of COPD. Int J Chron Obstr Pulmon Dis. 2014;9:397–412.

    Google Scholar 

  31. Novartis. Safety and efficacy of multiple doses of Canakinumab (ACZ885) in chronic obstructive pulmonary disease (COPD) patients. 2014 [cited 2016 January 3rd]. Available from: http://clinicaltrials.gov/show/NCT00581945

  32. Strand V, Burmester GR, Ogale S, et al. Improvements in health-related quality of life after treatment with tocilizumab in patients with rheumatoid arthritis refractory to tumour necrosis factor inhibitors: results from the 24-week randomized controlled RADIATE study. Rheumatology (Oxford). 2012;51(10):1860–9.

    Article  CAS  Google Scholar 

  33. Matsuzaki H, Mikami Y, Makita K, et al. Interleukin-17A and toll-like receptor 3 ligand poly(I:C) synergistically induced neutrophil chemoattractant production by bronchial epithelial cells. PLoS One. 2015;10(10), e0141746.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Di Stefano A, Caramori G, Gnemmi I, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol. 2009;157(2):316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Papp KA, Leonardi C, Menter A, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9.

    Article  CAS  PubMed  Google Scholar 

  36. Leonardi C, Matheson R, Zachariae C, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9.

    Article  CAS  PubMed  Google Scholar 

  37. Saha S, Doe C, Mistry V, et al. Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax. 2009;64(8):671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vlahos R, Bozinovski S, Chan SP, et al. Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation. Am J Respir Crit Care Med. 2010;182(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  39. Mahler DA, Huang S, Tabrizi M, et al. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126(3):926–34.

    Article  CAS  PubMed  Google Scholar 

  40. Holz O, Khalilieh S, Ludwig-Sengpiel A, et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J. 2010;35(3):564–70.

    Article  CAS  PubMed  Google Scholar 

  41. Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1001–11.

    Article  CAS  PubMed  Google Scholar 

  42. Renda T, Baraldo S, Pelaia G, et al. Increased activation of p38 MAPK in COPD. Eur Respir J. 2008;31(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  43. Medicherla S, Reddy M, Ying J, et al. p38alpha-selective MAP kinase inhibitor reduces tumor growth in mouse xenograft models of multiple myeloma. Anticancer Res. 2008;28(6A):3827–33.

    CAS  PubMed  Google Scholar 

  44. Lomas DA, Lipson DA, Miller BE, et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease. J Clin Pharmacol. 2012;52(3):416–24.

    Article  CAS  PubMed  Google Scholar 

  45. MacNee W, Allan RJ, Jones I, et al. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax. 2013;68(8):738–45.

    Article  PubMed  Google Scholar 

  46. Duan W, Chan JH, McKay K, et al. Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med. 2005;171(6):571–8.

    Article  PubMed  Google Scholar 

  47. Millan DS, Bunnage ME, Burrows JL, et al. Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J Med Chem. 2011;54(22):7797–814.

    Article  CAS  PubMed  Google Scholar 

  48. Norman P. Investigational p38 inhibitors for the treatment of chronic obstructive pulmonary disease. Expert Opin Investig Drugs. 2015;24(3):383–92.

    Article  CAS  PubMed  Google Scholar 

  49. Marwick JA, Chung KF, Adcock IM. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis. 2010;4(1):19–34.

    Article  PubMed  Google Scholar 

  50. Larocca NE, Moreno D, Garmendia JV, et al. Inhibitors of phosphoinositol 3 kinase and NFkappaB for the treatment of chronic obstructive pulmonary disease. Rec Pat Inflamm Allergy Drug Discov. 2011;5(3):178–83.

    Article  CAS  Google Scholar 

  51. Ito K, Caramori G, Adcock IM. Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J Pharmacol Exp Ther. 2007;321(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  52. Thomas MJ, Smith A, Head DH, et al. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur J Immunol. 2005;35(4):1283–91.

    Article  CAS  PubMed  Google Scholar 

  53. Doukas J, Eide L, Stebbins K, et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2009;328(3):758–65.

    Article  CAS  PubMed  Google Scholar 

  54. Marwick JA, Caramori G, Stevenson CS, et al. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med. 2009;179(7):542–8.

    Article  CAS  PubMed  Google Scholar 

  55. To Y, Ito K, Kizawa Y, et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(7):897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bakke PS, Zhu G, Gulsvik A, et al. Candidate genes for COPD in two large data sets. Eur Respir J. 2011;37(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  57. Yew-Booth L, Birrell MA, Lau MS, et al. JAK-STAT pathway activation in COPD. Eur Respir J. 2015;46(3):843–5.

    Article  CAS  PubMed  Google Scholar 

  58. Fleischmann R, Kremer J, Cush J, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med. 2012;367(6):495–507.

    Article  CAS  PubMed  Google Scholar 

  59. Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med. 2012;367(7):616–24.

    Article  CAS  PubMed  Google Scholar 

  60. Kwak JH, Jung JK, Lee H. Nuclear factor-kappa B inhibitors; a patent review (2006–2010). Exp Opin Ther Pat. 2011;21(12):1897–910.

    Article  CAS  Google Scholar 

  61. Pasparakis M. Role of NF-kappaB in epithelial biology. Immunol Rev. 2012;246(1):346–58.

    Article  PubMed  Google Scholar 

  62. Di Stefano A, Caramori G, Oates T, et al. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J. 2002;20(3):556–63.

    Article  PubMed  Google Scholar 

  63. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med. 2006;203(1):7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cosio BG, Tsaprouni L, Ito K, et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med. 2004;200(5):689–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ford PA, Durham AL, Russell RE, et al. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest. 2010;137(6):1338–44.

    Article  CAS  PubMed  Google Scholar 

  66. Rossios C, To Y, Osoata G, et al. Corticosteroid insensitivity is reversed by formoterol via phosphoinositide-3-kinase inhibition. Br J Pharmacol. 2012;167(4):775–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kobayashi Y, Wada H, Rossios C, et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol. 2013;169(5):1024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010;177(4):1576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsiao HM, Thatcher TH, Colas RA, et al. Resolvin D1 reduces emphysema and chronic inflammation. Am J Pathol. 2015;185(12):3189–201.

    Article  CAS  PubMed  Google Scholar 

  70. Hsiao HM, Sapinoro RE, Thatcher TH, et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS One. 2013;8(3), e58258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yamauchi, Y., Nagase, T. (2017). New Anti-inflammatory Drugs for COPD: Is There a Possibility of Developing Drugs That Can Fundamentally Suppress Inflammation?. In: Nakamura, H., Aoshiba, K. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-10-0839-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0839-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0838-2

  • Online ISBN: 978-981-10-0839-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics