Skip to main content

Indoor/Outdoor Robot Localization

  • Chapter
  • First Online:
Advanced Technologies in Modern Robotic Applications

Abstract

Robot localization is essential for a wide range of applications, such as navigation, autonomous vehicle, intrusion detection, and so on. This chapter presents a number of localization techniques for both indoor and outdoor robots. The localization problem for an unknown static single target in wireless sensor network is investigated with least squares algorithm and Kalman filter. And an algorithm of passive radio frequency identification (RFID) indoor positioning is proposed based on interval Kalman filter, according to the geometric constraints of responding tags, combined with the target motion information. Next, the simultaneous localization and mapping algorithm (SLAM) for indoor positioning with the low-cost laser LIDAR—RPLIDAR—is investigated. Finally, for outdoor environments, we investigate two integration strategies to fuse inertial navigation system (INS) and vehicle motion sensor (VMS) outputs from their stand-alone configurations. The INS/VMS integration system is an entirely self-contained navigation system, and it is thus expected to benefit the GPS/INS when GPS signals are unavailable for long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Ma, H., Wang, Y., Fu, M.: Localization of static target in wsns with least-squares and extended kalman filter. In: Proceedings of the 2012 12th International Conference on Control Automation Robotics and Vision (ICARCV), pp. 602–607. IEEE (2012)

    Google Scholar 

  2. Wang, W.D., Ma, H.B., Wang, Y.Q., Fu, M.Y.: Performance analysis based on LS and EKF for localization of static target in WSNs (to be submitted)

    Google Scholar 

  3. Bizup, D.F., Brown, D.E.: The over-extended Kalman filter—don’t use it!. In: Proceedings of the Sixth International Conference on Information Fusion, Cairns, Qld., Australia, Univ. New Mexico, pp. 227–233 (2003)

    Google Scholar 

  4. Nazari Shirehjini, A., Yassine, A., Shirmohammadi, S.: An rfid-based position and orientation measurement system for mobile objects in intelligent environments. IEEE Trans. Instrum. Meas. 61(6), 1664–1675 (2012)

    Article  Google Scholar 

  5. Moore, R.E., Moore, R.: Methods and Applications of Interval Analysis, vol. 2. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  6. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: From principles to implementation. J. ACM (JACM) 48(5), 1038–1068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, G., Wang, J., Leang Shieh, S.: Interval kalman filtering. IEEE Trans. Aerosp. Electron. Syst. 33(1), 250–259 (1997)

    Article  Google Scholar 

  8. Siouris, G.M., Chen, G., Wang, J.: Tracking an incoming ballistic missile using an extended interval kalman filter. IEEE Trans. Aerosp. Electron. Syst. 33(1), 232–240 (1997)

    Article  Google Scholar 

  9. Wu, M., Ma, H., Fu, M., Yang, C.: Particle filter based simultaneous localization and mapping using landmarks with rplidar. Intelligent Robotics and Applications, pp. 592–603. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Bar-Shalom, Y., Fortmann, T.E.: Tracking and Data Association. Academic, Cambridge (1988)

    MATH  Google Scholar 

  11. Ding, S., Chen, X., Han, J.D.: A new solution to slam problem based on local map matching. Robots 31(4), 296–303 (2009)

    Google Scholar 

  12. Julier, Simon J., and Jeffrey K. Uhlmann. “Unscented filtering and nonlinear estimation.” Proceedings of the IEEE 92.3 (2004): 401–422

    Google Scholar 

  13. Ma, Y., Ju, H., Cui, P.: Research on localization and mapping for lunar rover based on rbpf-slam. Intell. Hum. Mach. Syst. Cybern. 2, 2880–2892 (2009)

    Google Scholar 

  14. Hao, Y.M., Dong, D.L., Zhu, F., Wei, F.: Landmarks optimal selecting for global location of mobile robot. High Technol. Lett. 11(8), 82–85 (2001)

    Google Scholar 

  15. Gellert, W., Köstner, H., Hellwich, M., Kästner, H.: The VNR Concise Encyclopedia of Mathematics. Van Nostrand Reinhold, New York (1977)

    Book  MATH  Google Scholar 

  16. Ma, H., Lum, K.: Adaptive estimation and control for systems with parametric and nonparametric uncertainties. Adaptive Control, pp. 15–64. I-Tech Education and Publishing, Vienna, Austria (2009)

    Google Scholar 

  17. Qingzhe, W., Mengyin, F., Xuan, X., Zhihong, D.: Automatic calibration and in-motion alignment of an odometer-aided ins. In: Proceedings of the 2012 31st Chinese Control Conference (CCC), pp. 2024–2028. IEEE (2012)

    Google Scholar 

  18. Noureldin, A., EI-Shafie, A., Bayoumi, M.: GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf. Fusion 12, 48–57 (2011)

    Article  Google Scholar 

  19. Zhang, H., Zhao, Y.: The performance comparison and analysis of extended kalman filters for GPS/DR navigation. Optik 122, 777–781 (2011)

    Article  Google Scholar 

  20. Kaygisiz, B., Erkmen, I., Erkmen, A.: GPS/INS enhancement for land navigation using neural network. J. Navig. 57, 297–310 (2005)

    Article  Google Scholar 

  21. Stanc̆ić, R., Graovac, S.: The integration of strap-down INS and GPS based on adaptive error damping. Robot. Auton. Syst. doi:10.1016/j.robot.2010.06.004

    Google Scholar 

  22. Grewal, M.S., Weill, L.R., Andrews, A.P.: Global Positioning Systems, Inertial Navigaiton, and Integration. Wiley, New York (2001)

    Google Scholar 

  23. Rogers, R.M.: Applied Mathematics in Integrated Navigation Systems, 3rd edn. American Institute of Aeronautics and Astronautics Inc, Virginia (2003)

    Google Scholar 

  24. Chiang, K., Huang, Y.: An intelligent navigator for seamless INS/GPS integratede land vehicle navigation applications. Appl. Soft Comput. 8, 722–733 (2008)

    Article  Google Scholar 

  25. Toledo-Moreo, R., Btaille, D., Peyret, F., Laneurit, J.: Fusing GNSS, dead-reckoning, and enhanced maps for road vehicle lane-level navigation. IEEE J. STSP 3(5), 798–809 (2009)

    Google Scholar 

  26. Kubo, Y., Kindo, T., Ito, A., Sugimoto, S.: DGPS/INS/wheel sensor integration for high accuracy land-vehicle positioning. In: Proceedings of the ION GPS, Nashville, TN, pp. 555–564, Sept 1999

    Google Scholar 

  27. Cunha, S., Bastos, L., Cunha, T., Tomé, P.: On the integration of inertial and GPS data with an odometer for land vehicles navigation. In: Proceedings of the ION GPS/GNSS, Portland, OR, pp. 940–944, Sept 2003

    Google Scholar 

  28. Dissanayake, G., Sukkarieh, S., Nebot, E., Durrant-Whyte, H.: The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Trans. Robot. Autom. 17(5), 731–747 (2001)

    Article  Google Scholar 

  29. Syed, Z.F., Aggarwal, P., Niu, X., EI-Sheimy, N.: Civilian vehicle navigation: required alignment of the inertial sensors for acceptable navigation accuracies. IEEE Trans. Veh. Technol. 57(6), 3402–3412 (2008)

    Article  Google Scholar 

  30. Wu, Y.X., Wu, M.P., Hu, X.P., Hu, D.W.: Self-calibration for land navigation using inertial sensors and odometer: Observability analysis. In: Proceedings of the AIAA Conference on Guidance, Navigation, and Control, Chicago, Illinois, pp. 1–10, Aug 2009

    Google Scholar 

  31. Yan, G.M., Qin, Y.Y., Yang, B.: On error compensation technology for vehicular dead reckoning (DR) system. J. Northwest. Polytech. Univ. 24(1), 26–30 (2006)

    Google Scholar 

  32. Savage, P.G.: Strapdown Analytics. Strapdown Associates, Minnesota (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguang Yang or Hongbin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, C., Ma, H., Fu, M. (2016). Indoor/Outdoor Robot Localization. In: Advanced Technologies in Modern Robotic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-0830-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0830-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0829-0

  • Online ISBN: 978-981-10-0830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics