Advertisement

Intelligent Control of Robot Manipulator

  • Chenguang YangEmail author
  • Hongbin MaEmail author
  • Mengyin Fu
Chapter

Abstract

This chapter presents a series of intelligent control schemes for robot manipulator control. A controller using fuzzy logic to infer the learning parameters is developed to improve the performance of the dual-adaptive controller. A new task space/joint space hybrid control scheme for bimanual robot with impedance and force control is also introduced. The task space controller adapts end-point impedance, to compensate for interactive dynamics, and the joint space controller adapts the impedance to improve robustness against external disturbances. An adaptive model reference control is designed for robots to track desired trajectories and for the closed-loop dynamics to follow a reference model, which is derived using the LQR optimization technique to minimize both the motion tracking error and the transient acceleration for a smooth trajectory. A new discrete-time adaptive controller for robot manipulator with uncertainties from the unknown or varying payload is introduced, based on the idea of one-step guess. The history information is used to estimate the unknown fixed or time-varying payload on the end effector.

References

  1. 1.
    Slotine, J.J., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces with application to robot manipulators. Am. Control Conf. 1983, 132–135 (1983)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Parra-Vega, V., Arimoto, S., Liu, Y.H., Hirzinger, G., Akella, P.: Dynamic sliding pid control for tracking of robot manipulators: theory and experiments. IEEE Trans. Robot. Autom. 19(6), 967–976 (2004)CrossRefGoogle Scholar
  3. 3.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S.: Saturated nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. PP(99), 1–1 (2015)Google Scholar
  4. 4.
    Takeuchi, T., Nagai, Y., Enomoto, N.: Fuzzy control of a mobile robot for obstacle avoidance. Inf. Sci. 45(88), 231–248 (1988)CrossRefGoogle Scholar
  5. 5.
    Liu, Z., Chen, C., Zhang, Y.: Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash. IEEE Trans. Fuzzy Syst. 23(3), 605–616 (2015)CrossRefGoogle Scholar
  6. 6.
    Lewis, F.L., Yesildirak, A., Jagannathan, S.: Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor & Francis Inc, Lindon (1998)Google Scholar
  7. 7.
    Slotine, J.-J.E., Li, W.: On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.P.: Adaptive control of robotic systems with unknown actuator nonlinearities and control directions. Nonlinear Dyn. 81(3), 1289–1300 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.P., Xie, S.: Adaptive control of mimo mechanical systems with unknown actuator nonlinearities based on the nussbaum gain approach. IEEE/CAA J. Autom. Sin. 3(1), 26–34 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Soitrov, Z.M., Botev, R.G.: A model reference approach to adaptive impedance control of robot manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS Proceedings of the 1993, pp. 727–733 (1993)Google Scholar
  11. 11.
    Landau, Y.D.: Adaptive Control. Marcel Dekker, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Slotine, J.-J.E., Li, W.: On the adaptive control of robotic manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  13. 13.
    Burdet, E., Osu, R., Franklin, D., Milner, T., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)CrossRefGoogle Scholar
  14. 14.
    Franklin, D.W., Osu, R., Burdet, E., Kawato, M., Milner, T.E., et al.: Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. J. Neurophysiol. 90(5), 3270–3282 (2003)CrossRefGoogle Scholar
  15. 15.
    Franklin, D.W., Burdet, E., Tee, K.P., Osu, R., Chew, C.M., Milner, T.E., Kawato, M.: CNS learns stable, accurate, and efficient movements using a simple algorithm. J. Neurosci. 28(44), 11165–11173 (2008)CrossRefGoogle Scholar
  16. 16.
    Ganesh, G., Albu-Schaffer, A., Haruno, M., Kawato, M., Burdet, E.: Biomimetic motor behavior for simultaneous adaptation of force, impedance and trajectory in interaction tasks. 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2705–2711. IEEE (2010)Google Scholar
  17. 17.
    Burgar, C.G., Lum, P.S., Shor, P.C., Hf, M.V.D.L.: Development of robots for rehabilitation therapy: the palo alto va/standford experience. J. Rehabil. Res. Develop. 37(6), 663–673 (1999)Google Scholar
  18. 18.
    Lum, P.S., Burgar, C.G., Shor, P.C., Matra, M., Machiel, V.D.L.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRefGoogle Scholar
  19. 19.
    Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54(10), 1938–1944 (2000)CrossRefGoogle Scholar
  20. 20.
    Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43(1), 2–10 (2005)CrossRefGoogle Scholar
  21. 21.
    Kumar, V.: Control of cooperating mobile manipulators. IEEE Trans. Robot. Autom. 18(1), 94–103 (2002)CrossRefGoogle Scholar
  22. 22.
    Hogan, N.: Impedance control: An approach to manipulation: Part iiłimplementation. J. Dyn. Syst. Meas. Control 107(1), 8–16 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yang, C., Ganesh, G., Haddadin, S., Parusel, S., Albu-Schäeffer, A., Burdet, E.: Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans. Robot. 27(5), 918–930 (2011)CrossRefGoogle Scholar
  24. 24.
    Smith, A., Yang, C., Ma, H., Culverhouse, P., Cangelosi, A., Burdet, E.: Biomimetic join/task space hybrid adaptive control for bimanual robotic manipulation. In: IEEE International Conference on Control and Automation, 2014. ICCA ’14. IEEE (2014)Google Scholar
  25. 25.
    Smith, A., Yang, C., Ma, H., Culverhouse, P., Cangelosi, A., Burdet, E.: Dual adaptive control of bimanual manipulation with online fuzzy parameter tuning. In: 2014 IEEE International Symposium on Intelligent Control (ISIC), pp. 560–565. IEEE (2014)Google Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bouchon-Meunier, B., Dotoli, M., Maione, B., et al.: On the choice of membership functions in a mamdani-type fuzzy controller. In: Proceedings of the First Online Workshop on Soft Computing, Nagoya, Japan. Citeseer (1996)Google Scholar
  28. 28.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, West Sussex (2009)Google Scholar
  29. 29.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)CrossRefzbMATHGoogle Scholar
  30. 30.
    Pattacini, U., Nori, F., Natale, L., Metta, G., Sandini, G.: An experimental evaluation of a novel minimum-jerk cartesian controller for humanoid robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan (2010)Google Scholar
  31. 31.
    Hogan, N.: Impedance control: an approach to manipulation. American Control Conference, 1984, pp. 304–313. IEEE (1984)Google Scholar
  32. 32.
    Smith, A., Yang, C., Ma, H., Culverhouse, P., Cangelosi, A., Burdet, E.: Biomimetic joint/task space hybrid adaptive control for bimanual robotic manipulation. In: 11th IEEE International Conference on Control & Automation (ICCA), pp. 1013–1018. IEEE (2014)Google Scholar
  33. 33.
    Yang, C., Ma, H., Fu, M., Smith, A.M.: Optimized model reference adaptive motion control of robot arms with finite time tracking. In: 2012 31st Chinese Control Conference (CCC), pp. 4356–4360. IEEE (2012)Google Scholar
  34. 34.
    Tayebi, A.: Adaptive iterative learning control for robot manipulators. Automatica 40(7), 1195–1203 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Anderson, B., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Prentice-Hall Inc, Upper Saddle River (1990)zbMATHGoogle Scholar
  36. 36.
    Yang, C., Li, Z., Li, J.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43(1), 24–36 (2013)CrossRefGoogle Scholar
  37. 37.
    Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of underactuated wheeled inverted pendulum models. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2004–2016 (2014)CrossRefGoogle Scholar
  38. 38.
    Li, J., Ma, H., Yang, C., Fu, M.: Discrete-time adaptive control of robot manipulator with payload uncertainties. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 1971–1976. IEEE (2015)Google Scholar
  39. 39.
    Rong, L., Ma, H., Wang, M.: Nontrivial closed-loop analysis for an extremely simple one-step-guess adaptive controller. In: 2011 Chinese Control and Decision Conference (CCDC), pp. 1385–1390 (2011)Google Scholar
  40. 40.
    Rong, L., Ma, H., Yang, C., Wang, M.: Decentralized adaptive tracking with one-step-guess estimator. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 1320–1325 (2011)Google Scholar
  41. 41.
    Huang, A.-C., Chien, M.-C.: Adaptive Control of Robot Manipulators: A Unified Regressor-Free Approach. World Scientific, Singapore (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Science Press and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Key Lab of Autonomous Systems and Networked Control, Ministry of EducationSouth China University of TechnologyGuangzhouChina
  2. 2.Centre for Robotics and Neural SystemsPlymouth UniversityDevonUK
  3. 3.School of AutomationBeijing Institute of TechnologyBeijingChina
  4. 4.State Key Lab of Intelligent Control and Decision of Complex SystemBeijing Institute of TechnologyBeijingChina

Personalised recommendations