Skip to main content

Multiagent Robot Systems

  • Chapter
  • First Online:
Advanced Technologies in Modern Robotic Applications
  • 1630 Accesses

Abstract

In this chapter, we will first give an introduction of multiagent systems, which can serve as abstraction or simplified models for vast real-life complex systems, where local interactions among agents lead to complex global behaviors such as coordination, synchronization, formation, and so on. Then, as simple yet nontrivial examples of cooperation among robots, two typical cases of three-robot line formations are investigated and illustrated in a general mathematical framework of optimal multirobot formation. The robots moving with different speeds are expected to row on one straight line with the minimum formation time, so that the formation can be formulated in the most efficient way. Next, we investigate the hunting issue of a multirobot system in a dynamic environment. The proposed geometry-based strategy has the advantages of fast calculation and can be applied to three-dimensional space easily. At the end of the chapter, we investigate a few important problems in multirobot cooperative lifting control, and present an simulation study showing an example of four arms lifting one desk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  Google Scholar 

  2. Jadbabaie, A., Lin, J., et al.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  3. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  4. Tanner, H.G., Christodoulakis, D.K.: State synchronization in local-interaction networks is robust with respect to time delays. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 4945–4950. IEEE (2005)

    Google Scholar 

  5. Xiao, F., Wang, L.: State consensus for multi-agent systems with switching topologies and time-varying delays. Int. J. Control 79(10), 1277–1284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angeli, D., Bliman, P.-A.: Stability of leaderless discrete-time multi-agent systems. Math. Control Signals Syst. 18(4), 293–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hongbin, M., Meiling, W., Zhenchao, J., Chenguang, Y.: A new framework of optimal multi-robot formation problem. In: Control Conference (CCC), 2011 30th Chinese, pp. 4139–4144. IEEE (2011)

    Google Scholar 

  8. Jia, Z., Ma, H., Yang, C., Wang, M.: Three-robot minimax travel-distance optimal formation. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7641–7646. IEEE (2011)

    Google Scholar 

  9. Jia, Z.C., Ma, H.B., Yang, C.G., Wang, M.L.: Three-robot minimax travel-distance optimal formation. In: 2011 50th Ieee Conference on Decision and Control and European Control Conference (Cdc-Ecc), pp. 7641–7646 (2011)

    Google Scholar 

  10. Wang, M.L., Jia, Z.C., Ma, H.B., Fu, M.: Three-robot minimum-time optimal line formation. In: 2011 9th IEEE International Conference on Control and Automation (ICCA 2011), pp. 1326–31. IEEE (2011)

    Google Scholar 

  11. Jose, G., Gabriel, O.: Multi-robot coalition formation in real-time scenarios. Robot. Auton. Syst. 60(10), 1295–1307 (2012)

    Article  Google Scholar 

  12. Wang, H., Guo, Y., IEEE.: Minimal persistence control on dynamic directed graphs for multi-robot formation. In: 2012 IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  13. Madden, J., Arkin, R.C., MacNulty, D.R.: Multi-robot system based on model of wolf hunting behavior to emulate wolf and elk interactions. In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1043–1050 (2010)

    Google Scholar 

  14. Weitzenfeld, A., Vallesa, A., Flores, H.: A biologically-inspired wolf pack multiple robot hunting model, pp. 90–97 (2006)

    Google Scholar 

  15. Ma, Y., Cao, Z.Q., Dong, X., Zhou, C., Tan, M.: A multi-robot coordinated hunting strategy with dynamic alliance. In: 21st Chinese Control and Decision Conference, pp. 2338–2342 (2009)

    Google Scholar 

  16. Sun, W., Dou, L.H., Fang, H., Zhang, H.Q.: Task allocation for multi-robot cooperative hunting behavior based on improved auction algorithm, pp. 435–440 (2008)

    Google Scholar 

  17. Gong, J.W., Qi, J.Y., Xiong, G.M., Chen, H.Y., Huang, W.N.: A GA based combinatorial auction algorithm for multi-robot cooperative hunting. In: International Conference on Computational Intelligence and Security (2007)

    Google Scholar 

  18. Li, J., Pan, Q.S., Hong, B.R.: A new approach of multi-robot cooperative pursuit based on association rule data mining. Int. J. Adv. Robot. Syst. 6(4), 329–336 (2009)

    Google Scholar 

  19. Ge, S.S., Ma, H.B., Lum, K.Y.: Detectability in games of pursuit evasion with antagonizing players. In: Proceedings of the 46th IEEE Conference on Decision and Control, 12–14 Dec. 2007, pp. 1404–1409. IEEE (2007)

    Google Scholar 

  20. Ma, H.B., Ge, S.S., Lum, K.Y.: Attackability in games of pursuit and evasion with antagonizing players. In: Proceedings of the 17th World Congress, International Federation of Automatic Control. IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 17. Elsevier (2008)

    Google Scholar 

  21. Wang, C., Zhang, T., Wang, K., Lv, S., Ma, H.B.: A new approach of multi-robot cooperative pursuit. In: Control Conference (CCC), 2013 32nd Chinese, pp. 7252–7256. IEEE (2013)

    Google Scholar 

  22. Choi, H.S., Ro, P.I.: A force/position control for two-arm motion coordination and its stability robustness analysis. KSME J. 8(3), 293–302 (1994)

    Google Scholar 

  23. Wang, X., Qin, J., Han, S., Shao, C., et al.: Coordinated dynamic load distribution for multiple robot manipulators carrying a common object system. Acta Mechanica Sinica 15(1), 119–125 (1999)

    Google Scholar 

  24. Agravante, D.J., Cherubini, A., Bussy, A., Kheddar, A.: Human-humanoid joint haptic table carrying task with height stabilization using vision. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Tokyo,Japan), pp. 4609–4614. IEEE (2013)

    Google Scholar 

  25. Pouli, R.: Robot manipulators mathematics. In: Programming and Control (1981)

    Google Scholar 

  26. Chien, M.C., Huang, A.C.: Adaptive impedance control of robot manipulators based on function approximation technique. Robotica 22(04), 395–403 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguang Yang or Hongbin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, C., Ma, H., Fu, M. (2016). Multiagent Robot Systems. In: Advanced Technologies in Modern Robotic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-0830-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0830-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0829-0

  • Online ISBN: 978-981-10-0830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics