Skip to main content

Introduction of Robot Platforms and Relevant Tools

  • Chapter
  • First Online:
  • 1845 Accesses

Abstract

This chapter introduces a number of robot platforms and relevant devices used throughout this book, including the humanoid robot platforms such as Baxter robot and iCub robot; visual sensors of Microsoft Kinect, stereo camera Point Grey Bumblebee2 and 3D camera Leap Motion, as well as haptic devices of SensAble Omni and Novint joystick Falcon. Meanwhile, a number of software toolkits useful in robot simulation are also introduced in this chapter, e.g., the MATLAB Robotics Toolbox and the Virtual Robot Experiment Platform (V-REP) simulator. Robot Operating System (ROS) is also briefly introduced by highlighting the ROS characters and ROS level concepts. These devices and toolkits are nowadays becoming more and more popularly used in the study of robotics, as they provide ideal means for the study, design, and test of the robotic technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baxter Product Datasheet. http://rr-web.s3.amazonaws.com/assets/Baxter_datasheet_5.13.pdf

  2. Mohan, V., Morasso, P., Zenzeri, J., Metta, G., Chakravarthy, V.S., Sandini, G.: Teaching a humanoid robot to draw shapes. Auton. Robot. 31(1), 21–53 (2011)

    Article  Google Scholar 

  3. Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., Sandini, G.: Exploiting proximal f/t measurements for the icub active compliance. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1870–1876. IEEE (2010)

    Google Scholar 

  4. Fabian, J., Young, T., Peyton Jones, J.C., Clayton, G.M.: Integrating the microsoft kinect with simulink: real-time object tracking example. IEEE/ASME Trans. Mech. 19(1), 249–257 (2014)

    Article  Google Scholar 

  5. Colvin, C.E., Babcock, J.H., Forrest, J.H., Stuart, C.M., Tonnemacher, M.J., Wang, W.-S.: Multiple user motion capture and systems engineering. In: Proceedings of the 2011 IEEE Systems and Information Engineering Design Symposium (SIEDS), pp. 137–140. IEEE (2011)

    Google Scholar 

  6. http://www.openkinect.org/wiki/Main_Page

  7. Chye, C., Nakajima, T.: Game based approach to learn martial arts for beginners. In: Proceedings of the 2012 IEEE 18th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 482–485. IEEE (2012)

    Google Scholar 

  8. Soltani, F., Eskandari, F., Golestan, S.: Developing a gesture-based game for deaf/mute people using microsoft kinect. In: Proceedings of the 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 491–495. IEEE (2012)

    Google Scholar 

  9. Borenstein, G.: Making Things See: 3D Vision with Kinect, Processing, Arduino, and MakerBot, vol. 440. O’Reilly, Sebastopol (2012)

    Google Scholar 

  10. Cruz, L., Lucio, D., Velho, L.: Kinect and rgbd images: challenges and applications. In: Proceedings of the 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 36–49. IEEE (2012)

    Google Scholar 

  11. Yang, C., Amarjyoti, S., Wang, X., Li, Z., Ma, H., Su, C.-Y.: Visual servoing control of baxter robot arms with obstacle avoidance using kinematic redundancy. In: Proceedings of the Intelligent Robotics and Applications, pp. 568–580. Springer (2015)

    Google Scholar 

  12. The principle of leap motion. http://www.3dfocus.com.cn/news/show-440.html

  13. Chen, S., Ma, H., Yang, C., Fu, M.: Hand gesture based robot control system using leap motion. In: Proceedings of the Intelligent Robotics and Applications, pp. 581–591. Springer (2015)

    Google Scholar 

  14. Xu, C.B., Zhou, M.Q., Shen, J.C., Luo, Y.L., Wu, Z.K.: A interaction technique based on leap motion. J. Electron. Inf. Technol. 37(2), 353–359 (2015)

    Google Scholar 

  15. Pan, S.Y.: Design and feature discussion of MIDI. controller based on leap motion. Sci. Technol. China’s Mass Media 10, 128–129 (2014)

    Google Scholar 

  16. Wang, Q.Q., Xu, Y.R., Bai, X., Xu, D., Chen, Y.L., Wu, X.Y.: Dynamic gesture recognition using 3D trajectory. In: Proceedings of 2014 4th IEEE International Conference on Information Science and Technology, Shenzhen, Guanzhou, China, pp. 598–601, April 2014

    Google Scholar 

  17. Veras, E., Khokar, K., Alqasemi, R., Dubey, R.: Scaled telerobotic control of a manipulator in real time with laser assistance for adl tasks. J. Frankl. Inst. 349(7), 2268–2280 (2012)

    Article  MATH  Google Scholar 

  18. Chi, P., Zhang, D.: Virtual fixture guidance for robot assisted teleoperation. In: Bulletin of advanced technology, Vol 5, No. 7, Jul 2011

    Google Scholar 

  19. Hayn, H., Schwarzmann, D.: Control concept for a hydraulic mobile machine using a haptic operating device. In: Proceedings of the 2009 Second International Conferences on Advances in Computer-Human Interactions, ACHI’09, pp. 348–353. IEEE (2009)

    Google Scholar 

  20. Sansanayuth, T., Nilkhamhang, I., Tungpimolrat, K.: Teleoperation with inverse dynamics control for phantom omni haptic device. In: 2012 Proceedings of the SICE Annual Conference (SICE), pp. 2121–2126. IEEE (2012)

    Google Scholar 

  21. Silva, A.J., Ramirez, O.A.D., Vega, V.P., Oliver, J.P.O.: Phantom omni haptic device: Kinematic and manipulability. In: Proceedings of the 2009 Electronics, Robotics and Automotive Mechanics Conference, CERMA’09, pp. 193–198. IEEE (2009)

    Google Scholar 

  22. Mohammadi, A., Tavakoli, M., Jazayeri, A.: Phansim: a simulink toolkit for the sensable phantom haptic devices. In: Proceedings of the 23rd Canadian Congress of Applied Mechanics, pp. 787–790. Vancouver, BC, Canada (2011)

    Google Scholar 

  23. N.W.S.: Company specialized in 3d haptic devices. http://www.novint.com/index.php (2012)

  24. Martin, S., Hillier, N.: Characterisation of the novint falcon haptic device for application as a robot manipulator. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA), pp. 291–292. Citeseer (2009)

    Google Scholar 

  25. Distante, C., Anglani, A., Taurisano, F.: Target reaching by using visual information and q-learning controllers. Auton. Robot. 9(1), 41–50 (2000)

    Article  Google Scholar 

  26. Corke, P., et al.: A computer tool for simulation and analysis: the robotics toolbox for MATLAB. In: Proceedings of the National Conference of the Australian Robot Association, pp. 319–330 (1995)

    Google Scholar 

  27. MATLAB and Simulink for technical computing. http://www.mathworks.com/

  28. Chinello, F., Scheggi, S., Morbidi, F., Prattichizzo, D.: KCT: a MATLAB toolbox for motion control of kuka robot manipulators. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4603–4608. IEEE (2010)

    Google Scholar 

  29. Elons, A.S., Ahmed, M., Shedid, H., Tolba, M.F.: Arabic sign language recognition using leap motion sensor. In: Proceedings of the 2014 9th International Conference on Computer Engineering and Systems (ICCES), Cairos, pp. 368–373, December 2014

    Google Scholar 

  30. Leap motion—mac and pc motion controller for games, design, virtual reality and more

    Google Scholar 

  31. Ma, H., Wang, H., Fu, M., Yang, C.: One new human-robot cooperation method based on kinect sensor and visual-servoing. In: Proceedings of the Intelligent Robotics and Applications, pp. 523–534. Springer (2015)

    Google Scholar 

  32. O’Kane, J.M.: A gentle introduction to ros (2014)

    Google Scholar 

  33. Martinez, A., Fernández, E.: Learning ROS for Robotics Programming. Packt Publishing Ltd, Birmingham (2013)

    Google Scholar 

  34. ROS official. http://www.ros.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguang Yang or Hongbin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yang, C., Ma, H., Fu, M. (2016). Introduction of Robot Platforms and Relevant Tools. In: Advanced Technologies in Modern Robotic Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-0830-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0830-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0829-0

  • Online ISBN: 978-981-10-0830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics